Центральный Дом Знаний - Алгоритм Дейкстры

Информационный центр "Центральный Дом Знаний"

Заказать учебную работу! Жми!



ЖМИ: ТУТ ТЫСЯЧИ КУРСОВЫХ РАБОТ ДЛЯ ТЕБЯ

      cendomzn@yandex.ru  

Наш опрос

Я учусь (закончил(-а) в
Всего ответов: 2688

Онлайн всего: 1
Гостей: 1
Пользователей: 0


Форма входа

Логин:
Пароль:

Алгоритм Дейкстры

Алгори́тм Де́йкстры (Dijkstra’s algorithm), алгоритм на графах, изобретённый нидерландским ученым Э. Дейкстрой в 1959 году. Находит кратчайшее расстояние от одной из вершин графа до всех остальных. Алгоритм работает только для графов без рёбер отрицательного веса. Алгоритм широко применяется в программировании и технологиях, например, его использует протокол OSPF для устранения кольцевых маршрутов.

Вариант 1. Дана сеть автомобильных дорог, соединяющих города Московской области. Некоторые дороги односторонние. Найти кратчайшие пути от города Москва до каждого города области (если двигаться можно только по дорогам).

Вариант 2. Имеется некоторое количество авиарейсов между городами мира, для каждого известна стоимость. Стоимость перелёта из A в B может быть не равна стоимости перелёта из B в A. Найти маршрут минимальной стоимости (возможно, с пересадками) от Копенгагена до Барнаула.

Дан взвешенный ориентированный граф G(V,E) без петель и дуг отрицательного веса. Найти кратчайшие пути от некоторой вершины a графа G до всех остальных вершин этого графа. 

Dijksta Anim.gif

Каждой вершине из V сопоставим метку — минимальное известное расстояние от этой вершины до a. Алгоритм работает пошагово — на каждом шаге он «посещает» одну вершину и пытается уменьшать метки. Работа алгоритма завершается, когда все вершины посещены.

Инициализация. Метка самой вершины a полагается равной 0, метки остальных вершин — бесконечности. Это отражает то, что расстояния от a до других вершин пока неизвестны. Все вершины графа помечаются как непосещённые.

Шаг алгоритма. Если все вершины посещены, алгоритм завершается. В противном случае, из ещё не посещённых вершин выбирается вершина u, имеющая минимальную метку. Мы рассматриваем всевозможные маршруты, в которых u является предпоследним пунктом. Вершины, в которые ведут рёбра из u, назовем соседями этой вершины. Для каждого соседа вершины u, кроме отмеченных как посещённые, рассмотрим новую длину пути, равную сумме значений текущей метки u и длины ребра, соединяющего u с этим соседом. Если полученное значение длины меньше значения метки соседа, заменим значение метки полученным значением длины. Рассмотрев всех соседей, пометим вершину u как посещенную и повторим шаг алгоритма. 

Рассмотрим выполнение алгоритма на примере графа, показанного на рисунке. Пусть требуется найти кратчайшие расстояния от 1-й вершины до всех остальных.

Dijkstra graph0.PNG

Кружками обозначены вершины, линиями — пути между ними (ребра графа). В кружках обозначены номера вершин, над ребрами обозначена их «цена» — длина пути. Рядом с каждой вершиной красным обозначена метка — длина кратчайшего пути в эту вершину из вершины 1.

Dijkstra graph1.PNG

Первый шаг. Рассмотрим шаг алгоритма Дейкстры для нашего примера. Минимальную метку имеет вершина 1. Её соседями являются вершины 2, 3 и 6.

Dijkstra graph2.PNG

Первый по очереди сосед вершины 1 — вершина 2, потому что длина пути до неё минимальна. Длина пути в неё через вершину 1 равна сумме кратчайшего расстояния до вершины 1, значению её метки, и длины ребра, идущего из 1-ой в 2-ую, то есть 0 + 7 = 7. Это меньше текущей метки вершины 2, бесконечности, поэтому новая метка 2-й вершины равна 7.

Dijkstra graph3.PNG

Аналогичную операцию проделываем с двумя другими соседями 1-й вершины — 3-й и 6-й.

Dijkstra graph5.PNG

Все соседи вершины 1 проверены. Текущее минимальное расстояние до вершины 1 считается окончательным и пересмотру не подлежит (то, что это действительно так, впервые доказал Э. Дейкстра). Вычеркнем её из графа, чтобы отметить, что эта вершина посещена.

Dijkstra graph6.PNG

Второй шаг. Шаг алгоритма повторяется. Снова находим «ближайшую» из непосещенных вершин. Это вершина 2 с меткой 7.

Dijkstra graph7.PNG

Снова пытаемся уменьшить метки соседей выбранной вершины, пытаясь пройти в них через 2-ю вершину. Соседями вершины 2 являются вершины 1, 3 и 4.

Первый (по порядку) сосед вершины 2 — вершина 1. Но она уже посещена, поэтому с 1-й вершиной ничего не делаем.

Следующий сосед вершины 2 — вершина 3, так как имеет минимальную метку из вершин, отмеченных как не посещённые. Если идти в неё через 2, то длина такого пути будет равна 17 (7 + 10 = 17). Но текущая метка третьей вершины равна 9<17, поэтому метка не меняется.

Dijkstra graph9.PNG


Ещё один сосед вершины 2 — вершина 4. Если идти в неё через 2-ю, то длина такого пути будет равна сумме кратчайшего расстояния до 2-ой вершины и расстояния между вершинами 2 и 4, то есть 22 (7 + 15 = 22). Поскольку 22<
\infty, устанавливаем метку вершины 4 равной 22.

Dijkstra graph8.PNG

Все соседи вершины 2 просмотрены, замораживаем расстояние до неё и помечаем её как посещенную.

Dijkstra graph10.PNG

Третий шаг. Повторяем шаг алгоритма, выбрав вершину 3. После её «обработки» получим такие результаты:

Dijkstra graph11.PNG

Дальнейшие шаги. Повторяем шаг алгоритма для оставшихся вершин. Это будут вершины 6, 4 и 5, соответственно порядку.

Dijkstra graph12.PNG Dijkstra graph13.PNG Dijkstra graph14.PNG

Завершение выполнения алгоритма. Алгоритм заканчивает работу, когда вычеркнуты все вершины. Результат его работы виден на последнем рисунке: кратчайший путь от вершины 1 до 2-й составляет 7, до 3-й — 9, до 4-й — 20, до 5-й — 20, до 6-й — 11.

Обозначения:

  • V — множество вершин графа

  • E — множество ребер графа

  • w[ij] — вес (длина) ребра ij

  • a — вершина, расстояния от которой ищутся

  • U — множество посещенных вершин

  • d[u] — по окончании работы алгоритма равно длине кратчайшего пути из a до вершины u

  • p[u] — по окончании работы алгоритма содержит кратчайший путь из a в u

Псевдокод:

Присвоим 
Для всех u \in V отличных от a
присвоим d[u] \gets \infty
Пока \exists v \notin U
Пусть v \notin U — вершина с минимальным d[v]
Для всех u \notin U таких, что vu \in E
если d[u] > d[v] + w[vu] то
изменим d[u] \gets d[v] + w [vu]
изменим p[u] \gets p[v], u

В простейшей реализации для хранения чисел d[i] можно использовать массив чисел, а для хранения принадлежности элемента множеству U — массив булевых переменных.

В начале алгоритма расстояние для начальной вершины полагается равным нулю, а все остальные расстояния заполняются большим положительным числом (бо́льшим максимального возможного пути в графе). Массив флагов заполняется нулями. Затем запускается основной цикл.

На каждом шаге цикла мы ищем вершину с минимальным расстоянием и флагом равным нулю. Затем мы устанавливаем в ней флаг в 1 и проверяем все соседние с ней вершины. Если в ней расстояние больше, чем сумма расстояния до текущей вершины и длины ребра, то уменьшаем его. Цикл завершается когда флаги всех вершин становятся равны 1, либо когда у всех вершин c флагом 0 d[i] = \infty. Последний случай возможен тогда и только тогда, когда граф G не связан.

Доказательство корректности:

Пусть l(v) — длина кратчайшего пути из вершины a в вершину v. Докажем по индукции, что в момент посещения любой вершины z, d(z)=l(z).
База. Первой посещается вершина a. В этот момент d(a)=l(a)=0.
Шаг. Пускай мы выбрали для посещения вершину 
z\ne a. Докажем, что в этот момент d(z)=l(z). Для начала отметим, что для любой вершины v, всегда выполняется d(v)\ge l(v)(алгоритм не может найти путь короче, чем кратчайший из всех существующих). Пусть P — кратчайший путь из a в z, y — первая непосещённая вершина на P, x — предшествующая ей (следовательно, посещённая). Поскольку путь P кратчайший, его часть, ведущая из a через x в y, тоже кратчайшая, следовательно l(y)=l(x)+w(xy). По предположению индукции, в момент посещения вершины x выполнялось d(x)=l(x), следовательно, вершина y тогда получила метку не больше чем d(x)+w(xy)=l(x)+w(xy)=l(y) (если существует k, такое что l(k) + w(ky) < l(x) + w(xy) то x не принадлежит P). Следовательно, d(y)=l(y). С другой стороны, поскольку сейчас мы выбрали вершину z, её метка минимальна среди непосещённых, то есть d(z)\le d(y)=l(y)\le l(z). Комбинируя это с d(z)\ge l(z), имеем d(z)=l(z), что и требовалось доказать.

Поскольку алгоритм заканчивает работу, когда все вершины посещены, в этот момент d=l для всех вершин.

Сложность А.Д. зависит от способа нахождения вершины v, а также способа хранения множества непосещенных вершин и способа обновления меток. Обозначим через nколичество вершин, а через m — количество ребер в графе G.

  • В простейшем случае, когда для поиска вершины с минимальным d[v] просматривается все множество вершин, а для хранения величин d — массив, время работы алгоритма есть O(n2 +m). Основной цикл выполняется порядка n раз, в каждом из них на нахождение минимума тратится порядка n операций, плюс количество релаксаций (смен меток), которое не превосходит количества ребер в исходном графе.

  • Для разреженных графов (то есть таких, для которых m много меньше n²) непосещенные вершины можно хранить в двоичной куче, а в качестве ключа использовать значения d[i], тогда время извлечения вершины из \overline U станет log n, при том, что время модификации d[i] возрастет до log n. Так как цикл выполняется порядка n раз, а количество релаксаций не больше m, скорость работы такой реализации O(nlog n + mlog n)

  • Если для хранения непосещенных вершин использовать фибоначчиеву кучу, для которой удаление происходит в среднем за O(log n), а уменьшение значения в среднем за O(1), то время работы алгоритма составит O(nlog n + m). Однако, согласно сайту intuit.ru,

Loading

Календарь

«  Март 2024  »
ПнВтСрЧтПтСбВс
    123
45678910
11121314151617
18192021222324
25262728293031

Архив записей

Друзья сайта

  • Заказать курсовую работу!
  • Выполнение любых чертежей
  • Новый фриланс 24