Центральный Дом Знаний - Мегамир: современные авторофизические и космологические концепции

Информационный центр "Центральный Дом Знаний"

Заказать учебную работу! Жми!



ЖМИ: ТУТ ТЫСЯЧИ КУРСОВЫХ РАБОТ ДЛЯ ТЕБЯ

      cendomzn@yandex.ru  

Наш опрос

Я учусь (закончил(-а) в
Всего ответов: 2688

Онлайн всего: 1
Гостей: 1
Пользователей: 0


Форма входа

Логин:
Пароль:

Мегамир: современные авторофизические и космологические концепции

Содержание

Введение 3

Анализ понятия «Мегамир».

Современные космологические модели Вселенной 3

Сущность проблемы происхождения и эволюции Вселенной 7

Структура Вселенной 11

Заключение 16

Список использованной литературы 18

Введение.

Мегамир, или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел. Мегамир имеет системную организацию в форме планет и планетных систем, возникающих вокруг звезд; звезд и звездных систем — галактик; системы галактик — Метагалактики. Материя во Вселенной представлена сконденсировавшимися космическими телами и диффузной материей. Диффузная материя существует в виде разобщенных атомов и молекул, а также более плотных образований — гигантских” облаков пыли и газа — газово-пылевых туманностей. Значительную долю материи во Вселенной, наряду с диффузными образованиями, занимает материя в виде излучения. Следовательно,; космическое межзвездное пространство никоим образом не пусто.

  1. Анализ понятия «Мегамир». Современные космологические модели Вселенной.

С точки зрения современной науки Мегамир, это взаимодействующая и развивающаяся система всех небесных тел. Понятие "Вселенной" означает весь существующий материальный мир. Мегамир имеет системную организацию в форме планет и планетных систем, возникающих вокруг звезд; звезд и звездных систем — галактик; системы галактик — Метагалактики.

Часть Вселенной, доступная на данном уровне познания астрономических наблюдений, называется Метагалактикой, или "нашей вселенной". Строение происхождение, эволюцию Вселенной, как целого изучает космология - наука, занимающаяся учением о Вселенной, как о едином целом.

Материя во Вселенной представлена сконденсировавшими­ся космическими телами и диффузной материей. Диффузная материя существует в виде разобщенных атомов и молекул, а также более плотных образований — гигантских облаков пыли и газа — газово-пылевых туманностей. Значительную долю ма­терии во Вселенной, наряду с диффузными образованиями, за­нимает материя в виде излучения. Следовательно, космическое межзвездное пространство никоим образом не пусто.

Успешное изучение физических характеристик галактик и распространение исследований на все более отдаленные области Метагалактики делают возможной постановку вопроса о Вселенной как целого - ее устройства и развития. Правда, проблема эта ставилась философами еще 2500 лет назад как "космологическая проблема", но ставилась абстрактно, без знания и понимания физической стороны вопроса. В наши дни "космологическая проблема" эволюционировала до состояния развитой науки - космологии, располагающей фактами и математическими теориями, которые проверяются на основе наблюдений.

В классической науке существовала так называемая теория стационарного состояния Вселенной, согласно которой Вселенная всегда была почти такой же, как сейчас. Наука XIX в. рассматривала атомы как вечные простейшие элементы материи. Источник энергии звезд был неизвестен, поэтому нельзя было судить об их времени жизни. Когда они погаснут, Вселенная станет темной, но по-прежнему будет стационарной. Холодные звезды продолжали бы хаотическое и вечное блуждание в пространстве, а планеты порождали бы свой неизменный бег по рискованным орбитам. Астрономия была статичной: изучались движения планет и комет, описывались звезды, создавались их классификации, что было, конечно, очень важно. Но вопрос об эволюции Вселенной не ставился.

Классическая ньютоновская космология явно или неявно принимала следующие постулаты:

Вселенная — это все существующее, «мир в целом». Космология познает мир таким, каким он существует сам по себе, безотносительно к условиям познания.

Пространство и время Вселенной абсолютны, они не зависят от материальных объектов и процессов.

  • Пространство и время метрически бесконечны.

  • Пространство и время однородны и изотропны.

  • Вселенная стационарна, не претерпевает эволюции. Изменяться могут конкретные космические системы, но не мир в целом.

В ньютоновской космологии возникали два парадокса, связанные с постулатом бесконечности Вселенной.

Первый парадокс получил название «гравитационный». Суть его заключается в том, что если Вселенная бесконечна и в ней существует бесконечное количество небесных тел, то сила тяготения будет бесконечно большая, и Вселенная должна сколлапсировать, а не существовать вечно.

Второй парадокс называется фотометрическим: если существует бесконечное количество небесных тел, то должна быть бесконечная светимость неба, что не наблюдается.

Эти парадоксы, не разрешимые в рамках ньютоновской космологии, разрешает современная космология, в границах которой было введено представление об эволюционирующей Вселенной.

Современная релятивистская космология строит модели Вселенной, отталкиваясь от основного уравнения тяготения, введенного А. Эйнштейном в общей теории относительности (ОТО).

Основное уравнение ОТО связывает геометрию пространства (точнее, метрический тензор) с плотностью и распределением материи в пространстве.

Впервые в науке Вселенная предстала как физический объект. В теории фигурируют ее параметры: масса, плотность, размер, температура.

Уравнение тяготения Эйнштейна имеет не одно, а множество решений, чем и обусловлено наличие многих космологических моделей Вселенной. Первая модель была разработана А. Эйнштейном в 1917 г. Он отбросил постулаты ньютоновской космологии об абсолютности и бесконечности пространства. В соответствии с космологической моделью Вселенной А. Эйнштейна мировое пространство однородно и изотропно, материя в среднем распределена в ней равномерно, гравитационное притяжение масс компенсируется универсальным космологическим отталкиванием. Модель А. Эйнштейна носит стационарный характер, поскольку метрика пространства рассматривается как независимая от времени. Время существования Вселенной бесконечно, т.е. не имеет ни начала, ни конца, а пространство безгранично, но конечно.

Вселенная в космологической модели А. Эйнштейна стационарна, бесконечна во времени и безгранична в пространстве.

Эта модель казалась в то время вполне удовлетворительной, поскольку она согласовывалась со всеми известными фактами. Но новые идеи, выдвинутые А. Эйнштейном, стимулировали дальнейшее исследование, и вскоре подход к проблеме решительно изменился.

В том же 1917 г. голландский астроном В. де Ситтер предложил другую модель, представляющую собой также решение уравнений тяготения. Это решение имело то свойство, что оно существовало бы даже в случае «пустой» Вселенной, свободной от материи. Если же в такой Вселенной появлялись массы, то решение переставало быть стационарным: возникало некоторого рода космическое отталкивание между массами, стремящееся удалить их друг от друга. Тенденция к расширению, по В. де Ситтеру, становилась заметной лишь на очень больших расстояниях.

В 1922 г. русский математик и геофизик А.А. Фридман отбросил постулат классической космологии о стационарности Вселенной и получил решение уравнений Эйнштейна, описывающее Вселенную с «расширяющимся» пространством.

Решение уравнений А.А. Фридмана допускает три возможности. Если средняя плотность вещества и излучения во Вселенной равна некоторой критической величине, мировое пространство оказывается евклидовым и Вселенная неограниченно расширяется от первоначального точечного состояния. Если плотность меньше критической, пространство обладает геометрией Лобачевского и также неограниченно расширяется. И наконец, если плотность больше критической, пространство Вселенной оказывается римановым, расширение на некотором этапе сменяется сжатием, которое продолжается вплоть до первоначального точечного состояния.

Поскольку средняя плотность вещества во Вселенной неизвестна, то сегодня мы не знаем, в каком из этих пространств Вселенной мы живем.

В 1927 г. бельгийский аббат и ученый Ж. Леметр связал «расширение» пространства с данными астрономических наблюдений. Леметр ввел понятие «начало Вселенной» как сингулярности (т.е. сверх плотного состояния) и рождения Вселенной как Большого взрыва.

В 1929 г. американский астроном Э.П. Хаббл обнаружил существование странной зависимости между расстоянием и скоростью галактик: все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию, — система галактик расширяется.

Расширение Вселенной долгое время считалось научно установленным фактом, однако однозначно решить вопрос в пользу той или иной модели в настоящее время не представляется возможным.

  1. Сущность проблемы происхождения и эволюции Вселенной

Согласно теоретическим расчетам Ж. Леметра, радиус Вселен­ной в первоначальном состоянии был 10"12 см, что близко по размерам к радиусу электрона, а ее плотность составляла 1096 г/см3. В сингулярном состоянии Вселенная представляла со­бой микрообъект ничтожно малых размеров.

От первоначального сингулярного состояния Вселенная пере­шла к расширению в результате Большого взрыва. Г.А. Гамов разработал модель горячей Вселенной, рассматривая ядерные реакции, протекавшие в самом начале расширения Вселенной, и назвал ее "космологией Большого взрыва".

Ретроспективные расчеты определяют возраст Вселенной в 13— 20 млрд. лет. Г.А. Гамов предположил, что температура веще­ства была велика и падала с расширением Вселенной и что она в своей эволюции проходит определенные этапы, в ходе кото­рых происходит образование химических элементов и структур. "В современной космологии начальную стадию эволюции Вселен­ной делят на следующие "эры":

  • эру адронов — тяжелых частиц, вступающих в сильные взаимо­действия. Продолжительность — 0,0001 с, температура 1012 °К, плотность 1014 г/см3. В конце эры происходит аннигиляция частиц и античастиц, но остается некоторое количество прото­нов, гиперонов, мезонов;

  • эру лептонов — легких частиц, вступающих в электромагнитное взаимодействие. Продолжительность — 10 с, температура 1010 °К, плотность 104 г/см3. Основную роль играют легкие частицы, принимающие участие в реакциях между Протонами и нейтронами;

  • фотонную эру — продолжительность 1 млн. лет. Основная доля массы - энергий Вселенной - приходится на фотоны. К концу эры температура падает с 1010 до 3000 °К, плотность - с 104 до 1021 г/см3. Главную роль играет излучение, которое в конце эры отделяется от вещества;

  • звездную эру — наступает через 1 млн. лет после зарождения
    Вселенной. В звездную эру начинается процесс образования
    протозвезд и протогалактик."

Затем разворачивается грандиозная картина образования структуры Метагалактики.

В соответствии с инфляционной гипотезой космическая эволю­ция в ранней Вселенной проходит ряд этапов:

  • начало Вселенной определяется как состояние квантовой супер­гравитации с радиусом Вселенной в 10-50 см. Основные собы­тия в ранней Вселенной разыгрывались за ничтожно малый промежуток времени от 10-45 до 10-30 с;

  • стадия инфляции — в результате квантового скачка Вселенная перешла в состояние возбужденного вакуума и в отсутствие в ней вещества и излучения интенсивно расширялась по экспо­ненциальному закону. В этот период создавалось само про­странство и время Вселенной. За период инфляционной стадии продолжительностью 10-34 с Вселенная раздулась от невообра­зимо малых квантовых размеров 10-33 см до невообразимо больших 101000000 см, что на много порядков превосходит размер наблюдаемой Вселенной — 1028 см. Весь этот первоначальный период во Вселенной не было ни вещества, ни излучения;

  • переход от инфляционной стадии к фотонной — состояние лож­ного вакуума распалось, высвободившаяся энергия пошла на рождение тяжелых частиц и античастиц, которые, проаннигилировав, дали мощную вспышку излучения (света), осветивше­го космос;

  • этап отделения вещества от излучения: оставшееся после анни­гиляции вещество стало прозрачным для излучения, контакт между веществом и излучением пропал. Отделившееся от ве­щества излучение и составляет современный реликтовый фон, теоретически предсказанный Г.А. Гамовым и эксперименталь­но обнаруженный в 1965 г.

В дальнейшем развитие Вселенной шло в направлении от мак­симально простого однородного состояния к созданию все более сложных структур — атомов, галактик, звезд, планет, синтезу тяжелых элементов в недрах звезд.

Различие между этапами эволюции Вселенной в инфляцион­ной модели и модели Большого взрыва касается только пер­воначального этапа порядка Ю-30 с, далее между этими мо­делями принципиальных расхождений в понимании этапов космической эволюции нет. Различия в объяснении механиз­мов космической эволюции связаны с расхождением мировоз­зренческих установок. Уже с самого начала появления идеи расширяющейся и эволюционирующей Вселенной вокруг нее началась борьба.

Первой стала проблема начала и конца времени существования Вселенной, признание которой противоречило материалистиче­ским утверждениям о вечности, несотворимости и неуничтожимости и т. п. времени и пространства.

Естественно-научным обоснованием начала и конца времени существования Вселенной является доказанная в 1965 г. аме­риканскими физиками-теоретиками Пенроузом и С. Хокингом теорема, согласно которой в любой модели Вселенной с рас­ширением обязательно должна быть сингулярность - обрыв линий времени в прошлом, что можно понимать как начало времени. Это же верно и для ситуации, когда расширение сменит­ся на сжатие — тогда возникнет обрыв линий времени в буду­щем — конец времени. Причем точка начала сжатия интерпре­тируется физиком Ф. Тигшером как конец времени - Великий сток, куда стекаются не только галактики, но и сами "события" всего прошлого Вселенной.

Вторая проблема связана с творением миря из ничего. Мате­риалисты отвергали возможность творения, поскольку вакуум — это не ничего, а вид материи. У А.А. Фридмана математически момент начала расширения пространства выводится не со сверх­малым, а с нулевым объемом, и он говорит о возможности "со­творения мира из ничего".

В 80-е гг. американский физик А. Гут и советский физик А. Лин­де энергию Вселенной, которая сохраняется, разделили на гра­витационную и негравитационную части, имеющие разные знаки. И тогда полная энергия Вселенной будет равна нулю. Физики считают, что если предсказываемое несохранение барионного числа подтвердится, то тогда ни один из законов сохранения не будет препятствовать рождению Вселенной из ничего.

Можно выделить 2 основные концепции, объясняющие эволюцию Вселенной:

  • концепцию самоорганизации;

  • концепцию креационизма.

Для концепции самоорганизации материальная Вселенная являет­ся единственной реальностью, и никакой другой реальности помимо нее не существует. Эволюция Вселенной описывается в терминах самоорганизации: идет самопроизвольное упорядо­чивание систем в направлении становления все более сложных структур. Динамичный хаос порождает порядок. Вопрос о цели космической эволюции в рамках концепции самоорганизации ставиться не может.

В рамках концепции креационизма, т. е. творения, эволюция Вселенной связывается с реализацией программы, определяемой реальностью более высокого порядка, чем материальный мир. Сторонники креационизма обращают внимание на существо­вание во Вселенной направленного развития — от простых систем ко все более сложным и информационно емким, в хо­де которого создавались условия для возникновения жизни и человека.

В качестве дополнительного аргумента привлекается автропный принцип, суть которого заключается в том, что существование той Вселенной, в которой мы живем, зависит от численных значений фундаментальных физических констант — постоянной Планка, постоянной гравитации, констант взаимодействия и т. д.

Численные значения этих постоянных определяют основные особенности Вселенной, размеры атомов, атомных ядер, планет, звезд, плотность вещества и время жизни Вселенной. Если бы эти значения отличались от существующих хотя бы на ни­чтожно малую величину, то не только бы жизнь была невоз­можной, но и сама Вселенная как сложная упорядоченная структура была бы невозможна.

Среди современных физиков-теоретиков имеются сторонники как концепции самоорганизации, так и концепции креационизма. Последние признают, что развитие фундаментальной теорети­ческой физики делает насущной необходимостью разработку единой научно-теистической картины мира, синтезирующей все достижения в области знания и веры.

  1. Структура Вселенной

Вселенной на самых разных уровнях, от условно элементарных частиц и до гигантских сверхскоплений галактик, присуща структурность. Современная структура Вселенной является результатом космической эволюции, в ходе которой из протога-лактик образовались галактики, из протозвезд — звезды, из про-топланетного облака — планеты.

Метагалактика представляет собой совокупность звездных систем — галактик, а ее структура определяется их распределением в пространстве, заполненном чрезвычайно разреженным межгалактическим газом и пронизываемом межгалактическими лучами.

Согласно современным представлениям, для Метагалактики характерна ячеистая (сетчатая, пористая) структура. Эти представления основываются на данных астрономических наблюдений, показавших, что галактики распределены не равномерно, а сосредоточены вблизи границ ячеек, внутри которых галактик почти нет. Кроме того, найдены огромные объемы пространства (порядка миллиона кубических мегапарсек), в которых галактик пока не обнаружено. Пространственной моделью такой структуры может служить кусок пемзы, которая неоднородна в небольших выделенных объемах, но однородна в больших объемах. Если брать не отдельные участки Метагалактики, а ее крупномасштабную структуру в целом, то очевидно, что в этой структуре не существует каких-то особых, чем-то вьщеляющихся мест или направлений и вещество распределено сравнительно равномерно. Возраст Метагалактики близок к возрасту Вселенной, поскольку образование ее структуры приходится на период, следующий за разъединением вещества и излучения. По современным данным, возраст Метагалактики оценивается в 15 млрд лет. Ученые считают, что, по-видимому, близок к этому и возраст галактик, которые сформировались на одной из начальных стадий расширения Метагалактики.

Галактика — гигантская система, состоящая из скоплений звезд и туманностей, образующих в пространстве достаточно сложную конфигурацию.

По форме галактики условно разделяются на три типа: эллиптические, спиральные и неправильные.

Эллиптические галактики обладают пространственной формой эллипсоида с разной степенью сжатия. Они являются наиболее простыми по структуре: распределение звезд равномерно убывает от центра.

Спиральные галактики представлены в форме спирали, включая спиральные ветви. Это самый многочисленный вид галактик, к которому относится и наша Галактика — Млечный Путь.

Неправильные галактики не обладают выраженной формой, в них отсутствует центральное ядро.

Некоторые галактики характеризуются исключительно мощным радиоизлучением, превосходящим видимое излучение. Это радиогалактики.

В строении «правильных» галактик очень упрощенно можно выделить центральное ядро и сферическую периферию, представленную либо в форме огромных спиральных ветвей, либо в форме эллиптического диска, включающих наиболее горячие и яркие звезды и массивные газовые облака.

Ядра галактик проявляют свою активность в разных формах: в непрерывном истечении потоков вещества; в выбросах сгустков газа и облаков газа с массой в миллионы солнечных масс; в нетепловом радиоизлучении из околоядерной области.

В ядре галактики сосредоточены самые старые звезды, возраст которых приближается к возрасту галактики. Звезды среднего и молодого возраста расположены в диске галактики.

Звезды и туманности в пределах галактики движутся довольно сложным образом: вместе с галактикой они принимают участие в расширении Вселенной; кроме того, они участвуют во вращении галактики вокруг оси. Звезды. На современном этапе эволюции Вселенной вещество в ней находится преимущественно в звездном состоянии. 97% вещества в нашей Галактике сосредоточено в звездах, представляющих собой гигантские плазменные образования различной величины, температуры, с разной характеристикой движения. У многих других галактик, если не у большинства, «звездная субстанция» составляет более чем 99,9% их массы.

Возраст звезд меняется в достаточно большом диапазоне значений: от 15 млрд лет, соответствующих возрасту Вселенной, до сотен тысяч — самых молодых. Есть звезды, которые образуются в настоящее время и находятся в протозвездной стадии, т.е. они еще не стали настоящими звездами.

Огромное значение имеет исследование взаимосвязи между звездами и межзвездной средой, включая проблему непрерывного образования звезд из конденсирующейся диффузной (рассеянной) материи.

Рождение звезд происходит в газово-пылевых туманностях под действием гравитационных, магнитных и других сил, благодаря которым идет формирование неустойчивых однородностей и диффузная материя распадается на ряд сгущений. Если такие сгущения сохраняются достаточно долго, то с течением времени они превращаются в звезды. Важно отметить, что происходит процесс рождения не отдельной изолированной звезды, а звездных ассоциаций. Образовавшиеся газовые тела притягиваются друг к другу, но не обязательно объединяются в одно громадное тело. Как правило, они начинают вращаться относительно друг друга, и центробежная сила этого движения противодействует силе притяжения, ведущей к дальнейшей концентрации. Звезды эволюционируют от протозвезд, гигантских газовых шаров, слабо светящихся и с низкой температурой, к звездам — плотным плазменным телам с температурой внутри в миллионы градусов. Затем начинается процесс ядерных превращений, описываемый в ядерной физике. Основная эволюция вещества во Вселенной происходила и происходит в недрах звезд. Именно там находится тот «плавильный тигель», который обусловил химическую эволюцию вещества во Вселенной.

В недрах звезд при температуре порядка 10 млн градусов и при очень высокой плотности атомы находятся в ионизированном состоянии: электроны почти полностью или абсолютно все отделены от своих атомов. Оставшиеся ядра вступают во взаимодействие друг с другом, благодаря чему водород, имеющийся в изобилии в большинстве звезд, превращается при участии углерода в гелий. Эти и подобные ядерные превращения являются источником колоссального количества энергии, уносимой излучением звезд.

Огромная энергия, излучаемая звездами, образуется в результате ядерных процессов, происходящих внутри них. Те же силы, которые высвобождаются при взрыве водородной бомбы, образуют внутри звезды энергию, позволяющую ей излучать свет и тепло в течение миллионов и миллиардов лет за счет превращения водорода в более тяжелые элементы, и прежде всего в гелий. В итоге на завершающем этапе эволюции звезды превращаются в инертные («мертвые») звезды.

Звезды не существуют изолированно, а образуют системы. Простейшие звездные системы — так называемые кратные системы — состоят из двух, трех, четырех, пяти и больше звезд, обращающихся вокруг общего центра тяжести. Компоненты некоторых кратных систем окружены общей оболочкой диффузной материи, источником которой, по-видимому, являются сами звезды, выбрасывающие ее в пространство в виде мощного потока газа. Звезды объединены также в еще большие группы — звездные скопления, которые могут иметь «рассеянную» или «шаровую» структуру. Рассеянные звездные скопления — насчитывают несколько сотен отдельных звезд, шаровые скопления — многие сотни тысяч. И ассоциации, или скопления звезд, также не являются неизменными и вечно существующими. Через определенное количество времени, исчисляемое миллионами лет, они рассеиваются силами галактического вращения.

Солнечная система представляет собой группу небесных тел, весьма различных по размерам и физическому строению. В эту группу входят: Солнце, девять больших планет, десятки спутников планет, тысячи малых планет (астероидов), сотни комет, бесчисленное множество метеоритных тел, движущихся как роями, так и в виде отдельных частиц. К 1979 г. было известно 34 спутника и 2000 астероидов. Все эти тела объединены в одну систему благодаря силе притяжения центрального тела — Солнца. Солнечная система является упорядоченной системой, имеющей свои закономерности строения. Единый характер Солнечной системы проявляется в том, что все планеты вращаются вокруг Солнца в одном и том же направлении и почти в одной и той же плоскости. Большинство спутников планет (их лун) вращается в том же направлении и в большинстве случаев в экваториальной плоскости своей планеты. Солнце, планеты, спутники планет вращаются вокруг своих осей в том же направлении, в котором они совершают движение по своим траекториям. Закономерно и строение Солнечной системы: каждая следующая планета удалена от Солнца примерно в два раза дальше, чем предыдущая. Принимая во внимание закономерности строения Солнечной системы, кажется невозможным ее случайное образование.

О механизме образования планет в Солнечной системе также нет общепризнанных заключений. Солнечная система, по оценкам ученых, образовалась примерно 5 млрд. лет назад, причем Солнце — звезда второго (или еще более позднего) поколения. Таким образом, Солнечная система возникла на продуктах жизнедеятельности звезд предыдущих поколений, скапливавшихся в газово-пылевых облаках. Это обстоятельство дает основание назвать Солнечную систему малой частью звездной пыли. О происхождении Солнечной системы и ее исторической эволюции наука знает меньше, чем необходимо для построения теории плането-образования. От первых научных гипотез, выдвинутых примерно 250 лет назад, до наших дней было предложено большое число различных моделей происхождения и развития Солнечной системы, но ни одна из них не удостоилась перевода в ранг общепризнанной теории. Большинство из выдвигавшихся ранее гипотез сегодня представляет лишь исторический интерес.

Первые теории происхождения Солнечной системы были выдвинуты немецким философом И. Кантом и французским математиком П.С. Лапласом. Их теории вошли в науку как некая коллективная космогоническая гипотеза Канта—Лапласа, хотя разрабатывались они независимо друг от друга. Согласно этой гипотезе система планет вокруг Солнца образовалась в результате действия сил притяжения и отталкивания между частицами рассеянной материи (туманности), находящейся во вращательном движении вокруг Солнца.

Началом следующего этапа в развитии взглядов на образование Солнечной системы послужила гипотеза английского физика и астрофизика Дж. X. Джинса. Он предположил, что когда-то Солнце столкнулось с другой звездой, в результате чего из него была вырвана струя газа, которая, сгущаясь, преобразовалась в планеты. Однако с учетом огромного расстояния между звездами такое столкновение кажется совершенно невероятным. Более детальный анализ выявил и другие недостатки этой теории.

Современные концепции происхождения планет Солнечной системы основываются на том, что нужно учитывать не только механические силы, но и другие, в частности электромагнитные. Эта идея была выдвинута шведским физиком и астрофизиком X. Альф-веном и английским астрофизиком Ф. Хойлом. Считается вероятным, что именно электромагнитные силы сыграли решающую роль при зарождении Солнечной системы. В соответствии с современными представлениями, первоначальное газовое облако, из которого образовались и Солнце, и планеты, состояло из ионизированного газа, подверженного влиянию электромагнитных сил. После того как из огромного газового облака посредством концентрации образовалось Солнце, на очень большом расстоянии от него остались небольшие части этого облака. Гравитационная сила стала притягивать остатки газа к образовавшейся звезде — Солнцу, но его магнитное поле остановило падающий газ на различных расстояниях — как раз там, где находятся планеты. Гравитационная и магнитные силы повлияли на концентрацию и сгущение падающего газа, и в результате образовались планеты.

Когда возникли самые крупные планеты, тот же процесс повторился в меньших масштабах, создав, таким образом, системы спутников. Теории происхождения Солнечной системы носят гипотетический характер, и однозначно решить вопрос об их достоверности на современном этапе развития науки невозможно. Во всех существующих теориях имеются противоречия и неясные места.

Заключение

В настоящее время в области фундаментальной теоретической физики разрабатываются концепции, согласно которым объективно существующий мир не исчерпывается материальным миром, воспринимаемым нашими органами чувств или физическими приборами. Авторы данных концепций пришли к следующему выводу: наряду с материальным миром существует реальность высшего порядка, обладающая принципиально иной природой по сравнению с реальностью материального мира.

Возможность "законченных теорий" означала бы возможность конца науки, дальше которого нечего было бы познавать. И, наоборот, непреодолимая ограниченность каждой отдельной теории предполагает бесконечность всего научного познания. Известные науке обобщающие теории составляют важные этапы ее развития. Все они основаны на конкретных принципах, обобщающих определенный круг фактов, и допускают возможность и необходимость своего дальнейшего развития по пути создания все более общих и глубоких теорий, учитывающих новые, неизвестные ранее факторы. Так было, так будет и дальше. Таков закон познания, обусловленный законами самой природы.

Список использованной литературы

  1. Концепции современного естествознания: Учебник для вузов / Под ред. проф. В.Н. Лавриненко, проф. В.П. Ратникова. — 3-е изд., перераб. и доп. — М.: ЮНИТИ-ДАНА, 2006.

  2. Вайнберг С. Первые три минуты. Современный взгляд на про­исхождение Вселенной. — М., 1981.

  3. Крюков В. Р. Концепции современного естествознания: Конспект лекций. – М.: А-Приор, 2008

  4. Концепции современного естествознания: учебник для вузов. – Спб.: Питер, 2008

Loading

Календарь

«  Март 2024  »
ПнВтСрЧтПтСбВс
    123
45678910
11121314151617
18192021222324
25262728293031

Архив записей

Друзья сайта

  • Заказать курсовую работу!
  • Выполнение любых чертежей
  • Новый фриланс 24