Центральный Дом Знаний - Обыкновенные дифференциальные уравнения. Арнольд В.И.

Информационный центр "Центральный Дом Знаний"

Заказать учебную работу! Жми!



ЖМИ: ТУТ ТЫСЯЧИ КУРСОВЫХ РАБОТ ДЛЯ ТЕБЯ

      cendomzn@yandex.ru  

Наш опрос

Я учусь (закончил(-а) в
Всего ответов: 2582



Обыкновенные дифференциальные уравнения. Арнольд В.И.

Арнольд В.И.

Обыкновенные дифференциальные уравнения  


Ижевск: Удм.ГУ, 2000. - 368 с.

Отличается от имеющихся учебных руководств по обыкновенным дифференциальным уравнениям большей, чем это обычно принято, связью с приложениями, в особенности с механикой, и более геометрическим, бескоординатным изложением. В соответствии с этим в книге мало выкладок, но много понятий, необычных для курса дифференциальных уравнений (фазовые потоки, однопараметрические группы, диффеоморфизмы, касательные пространства и расслоения) и примеров из механики (например, исследование фазовых портретов консервативных систем с одной степенью свободы, теория малых колебаний, параметрический резонанс).

Для студентов и аспирантов механико-математических факультетов университетов и вузов с расширенной программой по математике, но будет интересна и специалистам в области математики и ее приложений.

 

 

Формат: djvu / zip 

Размер: 3,3 Мб



ОГЛАВЛЕНИЕ:
Предисловие к третьему изданию 5
Предисловие к первому изданию 9
Некоторые постоянно употребляемые обозначения .... 11
ГЛАВА 1. Основные понятия 12
§ 1. Фазовые пространства 12
§ 2. Векторные поля на прямой 36
§ 3. Линейные уравнения 51
§ 4. Фазовые потоки 62
§ 5. Действие диффеоморфизмов на векторные поля и на поля направлений 72
§ 6. Симметрии 83
ГЛАВА 2. Основные теоремы 96
§ 7. Теоремы о выпрямлении 96
§ 8. Применения к уравнениям выше первого порядка 113
§ 9. Фазовые кривые автономной системы 127
§ 10. Производная по направлению векторного поля и первые интегралы 132
§ 11. Линейные и квазилинейные уравнения первого порядка с частными производными 140
§ 12. Консервативная система с одной степенью свободы 151
ГЛАВА 3. Линейные системы 166
§ 13. Линейные задачи 166
§ 14. Показательная функция 169
§ 15. Свойства экспоненты 177
§ 16. Определитель экспоненты 184
§ 17. Практическое вычисление матрицы экспоненты — случай вещественных и различных собственных чисел 189
§ 18. Комплексификация и овеществление 192
§ 19. Линейное уравнение с комплексным фазовым пространством 197
§ 20. Комплексификация вещественного линейного уравнения 202
§ 21. Классификация особых точек линейных систем 213
§ 22. Топологическая классификация особых точек 218
§ 23. Устойчивость положений равновесия 229
§ 24. Случай чисто мнимых собственных чисел 235
§ 25. Случай кратных собственных чисел 241
§ 26. О квазимногочленах 252
§ 27. Линейные неавтономные уравнения 266
§ 28. Линейные уравнения с периодическими коэффициентами 281
§ 29. Вариация постоянных 290
ГЛАВА 4. Доказательства основных теорем 293
§ 30. Сжатые отображения 293
§ 31. Доказательство теорем существования и непрерывной зависимости от начальных условий 295
§ 32. Теорема о дифференцируемое™ 306
ГЛАВА 5. Дифференциальные уравнения на многообразиях 317
§ 33. Дифференцируемые многообразия 317
§ 34. Касательное расслоение. Векторные поля на многообразии 328
§ 35. Фазовый поток, заданный векторным полем 335
§ 36. Индексы особых точек векторного поля 339
Программа экзамена 355
Образцы экзаменационных задач 356
Предметный указатель 363

Loading

Календарь

«  Октябрь 2017  »
ПнВтСрЧтПтСбВс
      1
2345678
9101112131415
16171819202122
23242526272829
3031

Архив записей

Друзья сайта

  • Заказать курсовую работу!
  • Выполнение любых чертежей