![](/Illustracii_5/Ikonka_Skachat.jpg)
Тип урока: урок изучения и первичного закрепления нового материала.
Цели урока: создать условия для формирования знаний об алкенах как классе непредельных углеводородов, об особенностях их электронного строения и изомерии, физико-химических свойствах и способах получения.
Задачи урока:
Обучающие: изучить алкены как самостоятельный класс непредельных углеводородов, развивая знания о кратной двойной связи между атомами углерода; рассмотреть гомологию, изомерию и номенклатуру алкенов; изучить химические свойства алкенов, взаимное влияние атомов в молекуле на примере этилена и пропилена, правило Марковникова, познакомить с промышленными и лабораторными способами получения.
Развивающие: способствовать развитию логического мышления и интеллектуальных умений (анализировать, сравнивать, устанавливать причинно-следственные связи).
Воспитательные: продолжить формирование культуры умственного труда; коммуникационных навыков: прислушиваться к чужому мнению, доказывать свою точку зрения, находить компромиссы.
Методы обучения: словесные (беседа, проблемное изложение); эвристические (письменные и устные упражнения, решение задач, тестовые задания); наглядные (мультимедийное наглядное пособие).
Средства обучения: реализация внутри- и межпредметных связей, мультимедийное наглядное пособие (презентация), алгоритм решения задач и составления названий алкенов различного строения.
Технологии: элементы педагогики сотрудничества, личностно-ориентированного обучения (компетентностно-ориентированное обучение, гуманно-личностная технология, индивидуальный и дифференцированный подход), информационно-коммуникативной технологии, здоровьесберегающих образовательных технологий (организационно-педагогическая технология).
Краткое описание хода урока.
I. Организационный этап: взаимные приветствия педагога и учащихся; проверка подготовленности учащихся к уроку; организация внимания и настрой на урок.
Сообщение темы и задач изучения нового материала; показ его практической значимости.
II. Изучение нового материала:
Решение задачи на нахождение молекулярной формулы органического вещества по массовым долям элементов и относительной плотности паров этого вещества. (Слайд 2)
Элементный анализ этилена показывает, что в его состав входят примерно 87,5% углерода и 14,3% водорода. Плотность этилена по отношению к водороду равна 14.
Дано:
(C) = 85,7% (или 0,857)
|
Решение:
M(CxHy) = 14•2 = 28 г/моль. |
Найти: CxHy |
Алкены, или олефины, этиленовые — непредельные углеводороды, в молекулах которых между углеродными атомами имеется одна двойная связь. (Слайд 3) Алкены содержат в своей молекуле меньшее число водородных атомов, чем соответствующие им алканы (с тем же числом углеродных атомов), поэтому такие углеводороды называют непредельными или ненасыщенными. Алкены образуют гомологический ряд с общей формулой CnH2n.
Простейшим представителем этиленовых углеводородов, его родоначальником является этилен (этен) С2Н4. Строение его молекулы можно выразить такими формулами:
H H H H
| | : :
C==C C::C
| | : :
H H H H
По названию первого представителя этого ряда такие углеводороды называют этиленовыми.
В алкенах атомы углерода находятся во втором валентном состоянии (sр2-гибридизация). (Слайд 4) В этом случае между углеродными атомами возникает двойная связь, состоящая из одной s- и одной p-связи. Длина и энергия двойной связи равны соответственно 0,134 нм и 610 кДж/моль. Все валентные углы НСН близки к 120º.
Для алкенов характерны два вида изомерии: структурная и пространственная. (Слайд 5)
Виды структурной изомерии:
изомерия углеродного скелета
,
изомерия положения двойной связи
,
межклассовая изомерия
.
Геометрическая изомерия — один из видов пространственной изомерии. Изомеры, у которых одинаковые заместители (при разных углеродных атомах) расположены по одну сторону от двойной связи, называют цис-изомерами, а по разную — транс-изомерами:
.
По систематической номенклатуре названия алкенов производят заменой суффикса -ан в соответствующих алканах на суффикс -ен (алкан — алкен, этан — этен, пропан — пропен и т.д.). Выбор главной цепи и порядок названия тот же, что и для алканов. Однако в состав цепи должна обязательно входить двойная связь. Нумерацию цепи начинают с того конца, к которому ближе расположена эта связь. Например:
СH3
|
H3C—CH2—C—CH==CH2 H3C—C==CH—CH—CH2—CH3
| | |
CH3 CH3 CH3
3,3-диметилпентен-1 2,4-диметилгексен-2
(Слайд 6: Выполнение тестового задания № 1 для закрепления навыков составления структурных формул изомеров.)
Этиленовые обладают большей химической активностью, чем предельные углеводороды. (Слайд 7)
(Проблема: От чего зависит химическая активность алкенов?)
Химические свойства алкенов определяются двойной углерод-углеродной связью. π-Связь, как наименее прочная и более доступная, при действии реагента разрывается, а освободившиеся валентности углеродных атомов затрачиваются на присоединение атомов, из которых состоит молекула реагента. Это можно представить в виде схемы:
\ π / \ /
C==C + A—B → C—C
/ σ \ / | σ | \
А В
Для алкенов характерны реакции присоединения, окисления, полимеризации. Реакции присоединения. (Слайд 8) Чаще реакции присоединения идут по гетеролитическому типу, являясь реакциями электрофильного присоединения.
Присоединение водорода (гидрирование): Н2С=СН2 + H2 → Н3С—СН3
Присоединение галогенов: Н2С=СН2 + Cl2 → Cl−H2C—CH2−Cl
Легче идет присоединение хлора и брома, труднее — иода. Фтор с алкенами, как и с алканами, взаимодействует со взрывом. Присоединение брома к алкенам (реакция бромирования) — качественная реакция на непредельные углеводороды. При пропускании через бромную воду непредельных углеводородов желтая окраска исчезает.
Присоединение галогеноводородов: H2С=СН2 + НВr → Н3С—CH2Вr
Проблема: Как пойдёт присоединение бромоводорода к гомологам этилена несимметричного строения, например к пропилену?
(Слайд 9) Присоединение галогенводородов к гомологам этилена идет по правилу В.В.Марковникова: при обычных условиях водород галогенводорода присоединяется по месту двойной связи к наиболее гидрогенизированному атому углерода при двойной связи, а галоген — к менее гидрогенизированному. Правило Марковникова можно объяснить тем, что у несимметричных алкенов (например, в пропилене) электронная плотность распределена неравномерно.
СН3−HСδ+=Сδ−Н2 + Н+Вr − → Н3С—CHВr−СН3
Реакция идет по ионному механизму.
Правило Марковникова соблюдается при присоединении к несимметричным алкенам и других электрофильных реагентов (H2O, H2SО4, НСl и др.).
Присоединение воды (реакция гидратации):
H3C—CH=CH2 + H—OH → H3C—CH—CH3
|
OH
Реакции окисления. (Слайд 10) Алкены окисляются легче, чем алканы. Продукты, образованные при окислении алкенов, и их строение зависят от строения алкенов и от условий проведения реакции.
Горение: Н2С=СН2 + 3O2 → 2СO2 + 2Н2O
При действии на этилен водного раствора КМnO4 (при нормальных условиях) происходит образование двухатомного спирта — этиленгликоля:
3H2C=CH2 + 2KMnO4 + 4H2O → 3HOCH2—CH2OH + 2MnO2 + KOH
Эта реакция является качественной: фиолетовая окраска раствора перманганата калия изменяется при добавлении к нему непредельного соединения.
Этиленгликоль используется в качестве антифриза, из него получают волокно лавсан, взрывчатые вещества.
В более жестких условиях (окисление КМnO4 в присутствии серной кислоты или хромовой смесью) в алкене происходит разрыв двойной связи с образованием кислородсодержащих продуктов: H3C—CH=CH—CH3 + 2O2 → 2H3C—COOH
Окисление этена на серебряном катализаторе дает оксид этилена:
Ag, 350°C
2Н2С=СН2 + O2 → 2Н2С—СН2
\ /
О
Из оксида этилена получают уксусный альдегид, моющие средства, лаки, пластмассы, каучуки и волокна, косметические средства.
Проблема: Могут ли молекулы этилена и его гомологи взаимодействовать друг с другом?
Реакция полимеризации. (Слайд 11)
Процесс соединения многих одинаковых молекул в более крупные называется реакцией полимеризации.
Алкены широко используются в качестве мономеров для получения многих высокомолекулярных соединений (полимеров).
Реакция изомеризации. При нагревании или в присутствии катализаторов алкены способны изомеризоваться — происходит перемещение двойной связи или установление изостроения.
(Слайд 12: Выполнение тестового задания № 2 для отработки умений в написании уравнений химических реакций.)
В природе алкены встречаются редко. Алкены – этен, пропен и бутен – при обычных условиях (20 °С, 1 атм) – газы, от С5Н10 до С18Н36 – жидкости, высшие алкены – твердые вещества. Алкены нерастворимы в воде, хорошо растворимы в органических растворителях.
Обычно газообразные алкены выделяют из газов нефтепереработки (при крекинге) или попутных газов, а также из газов коксования угля.
В промышленности алкены получают дегидрированием алканов в присутствии катализатора.
Из лабораторных способов получения можно отметить следующие:
Из галогенопроизводных алканов:
.
2. Дегидратация спиртов (отщепление воды). В качестве катализатора используют кислоты (серную или фосфорную) или А12O3 (в таких реакциях водород отщепляется от наименее гидрогенизированного (с наименьшим числом водородных атомов) углеродного атома (правило А.М.Зайцева):
(Слайд 14: Выполнение тестового задания № 3 для обобщения знаний по изученному материалу.)
III. Выводы:
Алкены – непредельные углеводороды, в молекулах которых имеется одна двойная связь. Атомы углерода находятся в состоянии sp2- гибридизации. Общая формула – СnH2n. В названии алкенов используется суффикс –ен.
Для алкенов характерны: изомерия углеродной цепи, изомерия положения двойной связи, пространственная (геометрическая) и изомерия между классами.
Алкены обладают большой химической активностью. За счёт наличия π-связи алкены вступают в реакции присоединения, окисления, полимеризации.
IV. Домашнее задание: § 12, № 3
V. Литература:
1. О.С. Габриелян и др. Химия 10 М.: Дрофа 2002
2. О.С. Габриелян, И.Г.Остроумов, Е.Е. Остроумова Органическая химия в тестах, задачах, упражнениях 10 М.: Дрофа 2003
3. В.Б. Воловик, Е.Д. Крутецкая Органическая химия упражнения и задачи СПб: Оракул 1999
4. А.К. Лёвкин, А.А. Карцова Школьная химия самое необходимое СПб Аволон Азбука-классика 2004