Центральный Дом Знаний - Алгебраическое число

Информационный центр "Центральный Дом Знаний"

Заказать учебную работу! Жми!



ЖМИ: ТУТ ТЫСЯЧИ КУРСОВЫХ РАБОТ ДЛЯ ТЕБЯ

      cendomzn@yandex.ru  

Наш опрос

Я учусь (закончил(-а) в
Всего ответов: 2690

Онлайн всего: 1
Гостей: 1
Пользователей: 0


Форма входа

Логин:
Пароль:

Алгебраическое число

Алгебраическое число, число а, удовлетворяющее алгебраическому уравнению a1an+ ... + акa +an+1 = 0, где n ³ 1, a1, ..., an, an+1 — целые (рациональные) числа. Число a называется целым А. ч., если a1 = 1. Если многочлен f(x) = a1xn + ... + anx + an+1 не является произведением двух др. многочленов положительной степени с рациональными коэффициентом, то число n называется степенью А. ч. a. Простейшие А.ч. — корни двучленного уравнения xn = а, где а — рациональное число. Например, А. ч. будут рациональные числа, числа

целыми А. ч. будут целые числа, числа

С понятием А. ч. тесно связаны два больших направления в теории чисел. 1) Арифметика А. ч. (алгебраическая теория чисел), созданная Э. Куммером в середине 19 в., изучает свойства А. ч. Целые А. ч. обладают рядом свойств, аналогичных свойствам целых рациональных чисел, однако теорема об единственности разложения числа на простые множители не имеет места в теории целых А. ч. Для сохранения единственности разложения Куммер ввёл в рассмотрение т. н. «идеальные» числа (см. Идеал). 2) Теория приближения А. ч. изучает степень приближения А. ч. рациональными числами или алгебраическими же числами. Первым результатом в этом направлении была теорема Ж. Лиувилля, показывающая, что А. ч. «плохо» приближаются рациональными числами, точнее: если a - А. ч. степени n, то при любых целых рациональных р и q имеет место неравенство [a - p/q] > C/qn, где С = С(a) > 0 — постоянная, не зависящая от р и q, отсюда следует, что легко построить произвольное количество неалгебраических — трансцендентных чисел.

Лит.: Гекке Э., Лекции по теории алгебраических чисел, пер. с нем., М. — Л., 1940; Гельфонд А. О., Трансцендентные и алгебраические числа, М., 1952; Боревич З. И., Шафаревич И. P., Теория чисел, М., 1964.


Алгебраическое число над полем k — элемент алгебраического замыкания поля k, то есть корень многочлена с коэффициентами из k.

Если поле не указывается, то предполагается поле рациональных чисел, то есть k=\mathbb{Q}, в этом случае поле алгебраических чисел обычно обозначается \mathbb{A}. Поле \mathbb{A} является подполемполя комплексных чисел.

Эта статья посвящена именно этим «рациональным алгебраическим числам».

Связанные определения:

  • Комплексное число, не являющееся алгебраическим, называется трансцендентным.

  • Целыми алгебраическими числами называются корни многочленов с целыми коэффициентами и со старшим коэффициентом единица.

  • Если α — А.ч., то среди всех многочленов с рациональными коэффициентами, имеющих α своим корнем, существует единственный многочлен наименьшей степени со старшим коэффициентом, равным 1. Такой многочлен автоматически является неприводимым, он называется каноническим, или минимальным, многочленом алгебраического числа α. (Иногда каноническим называют многочлен, получающийся из минимального домножением на наименьший общий знаменатель его коэффициентов, то есть многочлен с целыми коэффициентами)

    • Степень канонического многочлена α называется степенью алгебраического числа α.

    • Другие корни канонического многочлена α называются сопряжёнными к α.

    • Высотой А.ч. α называется наибольшая из абсолютных величин коэффициентов в неприводимом и примитивном многочлене с целыми коэффициентами, имеющемα своим корнем.

Примеры:

  • Рациональные числа, и только они, являются алгебраическими числами 1-й степени.

  • Мнимая единица i и \sqrt2 являются алгебраическими числами 2-й степени. Сопряжёнными к ним являются соответственно -i и -\sqrt2.

  • При любом натуральном числе n число \sqrt[n]2 является алгебраическим степени n.

Свойства:

  • Множество алгебраических чисел счётно (Теорема Кантора).

  • Множество алгебраических чисел плотно в комплексной плоскости.

  • Сумма, разность, произведение и частное двух алгебраических чисел (кроме деления на нуль) суть алгебраические числа, то есть множество всех алгебраических чисел образует поле.

  • Корень многочлена с алгебраическими коэффициентами есть алгебраическое число, то есть поле алгебраических чисел алгебраически замкнуто.

  • Для всякого алгебраического числа α существует такое натуральное N, что Nα — целое алгебраическое число.

  • А.ч. α степени n имеет n различных сопряжённых чисел (включая себя).

  • α и β сопряжены тогда и только тогда, когда существует автоморфизм поля \mathbb{A}, переводящий α в β. 

Впервые алгебраические поля стал рассматривать Гаусс. При обосновании теории биквадратичных вычетов он развил арифметику целых гауссовых чисел, то есть чисел вида a + bi, где a иb — целые числа. Далее, изучая теорию кубических вычетов, Якоби и Эйзенштейн создали арифметику чисел вида a + bρ, где \rho = (-1+i\sqrt3)/2 — кубический корень из единицы, а aи b — целые числа. В 1844 году Лиувилль доказал теорему о невозможности слишком хорошего приближения корней многочленов с рациональными коэффициентами рациональными дробями, и, как следствие, ввёл формальные понятия алгебраических и трансцендентных (то есть всех прочих вещественных) чисел. Попытки доказать великую теорему Ферма привелиКуммера к изучению полей деления круга, введению понятия идеала и созданию элементов теории алгебраических чисел. В работах Дирихле, Кронекера, Гильберта и других теория алгебраических чисел получила свое дальнейшее развитие. Большой вклад в неё внесли русские математики Золотарев (теория идеалов), Вороной (кубические иррациональности, единицы кубических полей), Марков (кубическое поле), Сохоцкий (теория идеалов) и другие.

Loading

Календарь

«  Апрель 2024  »
ПнВтСрЧтПтСбВс
1234567
891011121314
15161718192021
22232425262728
2930

Архив записей

Друзья сайта

  • Заказать курсовую работу!
  • Выполнение любых чертежей
  • Новый фриланс 24