Центральный Дом Знаний - Алканы

Информационный центр "Центральный Дом Знаний"

Заказать учебную работу! Жми!



ЖМИ: ТУТ ТЫСЯЧИ КУРСОВЫХ РАБОТ ДЛЯ ТЕБЯ

      cendomzn@yandex.ru  

Наш опрос

Как Вы планируете отдохнуть летом?
Всего ответов: 903

Онлайн всего: 1
Гостей: 1
Пользователей: 0


Форма входа

Логин:
Пароль:

Алканы

Алка́ны (также насыщенные углеводороды, парафины, алифатические соединения), ациклические углеводороды линейного или разветвлённого строения, содержащие только простые связи и образующие гомологический ряд с общей формулой CnH2n+2.

А. являются насыщенными углеводородами и содержат максимально возможное число атомов водорода. Каждый атом углерода в молекулах А. находится в состоянии sp3-гибридизации — все 4 гибридные орбитали атома С равны по форме и энергии, 4 электронных облака направлены в вершины тетраэдра под углами 109°28'. За счёт одинарных связей между атомами С возможно свободное вращение вокруг углеродной связи. Тип углеродной связи — σ-связи, связи малополярны и плохо поляризуемы. Длина углеродной связи — 0,154 нм.

Простейшим представителем класса является метан (CH4).

По номенклатуре ИЮПАК названия А. образуются при помощи суффикса -ан путём добавления к соответствующему корню от названия углеводорода. Выбирается наиболее длинная неразветвлённая углеводородная цепь так, чтобы у наибольшего числа заместителей был минимальный номер в цепи. В названии соединения цифрой указывают номер углеродного атома, при котором находится замещающая группа или гетероатом, затем название группы или гетероатома и название главной цепи. Если группы повторяются, то перечисляют цифры, указывающие их положение, а число одинаковых групп указывают приставками ди-, три-, тетра-. Если группы неодинаковые, то их названия перечисляются в алфавитном порядке. 

2,6,6-триметил-3-этилгептан (слева направо) / 2,2,6-триметил-5-этилгептан (справа налево)

При сравнении положений заместителей в обоих комбинациях, предпочтение отдается той, в которой первая отличающаяся цифра является наименьшей. Таким образом, правильное название 2,2,6-триметил-3-этилгептан. 

Изомерия предельных углеводородов обусловлена простейшим видом структурной изомерии — изомерией углеродного скелета. Гомологическая разница — —CH2—. А., число атомов углерода в которых больше трёх, имеют изомеры. Число этих изомеров возрастает с огромной скоростью по мере увеличения числа атомов углерода. Для алканов с n = 1…12 число изомеров равно 1, 1, 1, 2, 3, 5, 9, 18, 35, 75, 159, 355.

Гомологический ряд алканов (первые 10 членов)

Метан

CH4

CH4

Этан

CH3—CH3

C2H6

Пропан

CH3—CH2—CH3

C3H8

Бутан

CH3—CH2—CH2—CH3

C4H10

Пентан

CH3—CH2—CH2—CH2—CH3

C5H12

Гексан

CH3—CH2—CH2—CH2—CH2—CH3

C6H14

Гептан

CH3—CH2—CH2—CH2—CH2—CH2—CH3

C7H16

Октан

CH3—CH2—CH2—CH2—CH2—CH2—CH2—CH3

C8H18

Нонан

CH3—CH2—CH2—CH2—CH2—CH2—CH2—CH2—CH3

C9H20

Декан

CH3—CH2—CH2—CH2—CH2—CH2—CH2—CH2—CH2—CH3

C10H22

 Физические свойства:

  • Температуры плавления и кипения увеличиваются с молекулярной массой и длиной главной углеродной цепи

  • При нормальных условиях неразветвлённые алканы с CH4 до C4H10 — газы; с C5H12 до C13H28 — жидкости; после C14H30 — твёрдые тела.

  • Температуры плавления и кипения понижаются от менее разветвленных к более разветвленным. Так, например, при 20 °C н-пентан — жидкость, а неопентан — газ.

  • Газообразные А. горят бесцветным или бледно-голубым пламенем с выделением большого количества тепла.

Физические свойства нормальных алканов:

n

Название

Тпл

Ткип

Плотность

Показатель преломления

1

Метан

182,48

164

0,466 (-452324)

-

2

Этан

183,3

88,63

0,546

-

3

Пропан

189,7

42,1

0,5853 (-45)

-

4

Бутан

138,35

0,5

0,5788

1,3326

Изобутан

159,60

11,73

0,5510

1,3508

5

Пентан

130

36,1

0,626

1,3575

6

Гексан

95

68,7

0,659

1,3749

7

Гептан

91

98,4

0,684

1,3876

8

Октан

57

125,7

0,703

1,3974

9

Нонан

54

150,8

0,718

1,4054

10

Декан

30

174,1

0,730

1,4119

11

Ундекан

25,6

195,9



12

Додекан

9,7

216,3



13

Тридекан

6,0

235,5



14

Тетрадекан

5,5

253,6



15

Пентадекан

10

270,7



16

Гексадекан

18,1

287,1



17

Гептадекан

22

302,6



18

Октадекан

28

317,4



19

Нонадекан

32

331,6



20

Эйкозан

36,4

345,1



21

Генэйкозан

40,4

215 (15 мм рт ст)



22

Докозан

44,4

224,5 (15 мм рт ст)



23

Трикозан

47,4

234 (15 мм рт ст)



24

Тетракозан

51,1

243 (15 мм рт ст)



25

Пентакозан

53,3

259 (15 мм рт ст)



26

Гексакозан

57

262 (15 мм рт ст)



27

Гептакозан

60

270 (15 мм рт ст)



28

Октакозан

61,1

280 (15 мм рт ст)



29

Нонакозан

64

286 (15 мм рт ст)



30

Триаконтан

66

304 (15 мм рт ст)



40

Тетраконтан

81,4



50

Пентаконтан

92,1

421



60

Гексаконтан

98,9



70

Гептаконтан

105,3



100

Гектан

115,2



В ИК-спектрах А. четко проявляются частоты валентных колебаний связи С—Н в области 2850—3000 см−1. Частоты валентных колебаний связи С—С переменны и часто малоинтенсивны. Характеристические деформационные колебания в связи С—Н в метильной и метиленовой группах обычно лежат в интервале 1400—1470 см−1, однако метильная группа дает в спектрах слабую полосу при 1380 см−1. 

Чистые А. не поглощают в ультрафиолетовой области выше 2000 Å и по этой причине часто оказываются отличными растворителями для снятия УФ-спектров других соединений.

А. имеют низкую химическую активность. Это объясняется тем, что единичные связи C—H и C—C относительно прочны и их сложно разрушить. Поскольку углеродные связи неполярны, а связи С—Н малополярны, оба вида связей малополяризуемы и относятся к σ-виду, их разрыв наиболее вероятен по гомолитическому механизму, то есть с образованием радикалов. 

Галогенирование А. протекает по радикальному механизму. Для инициирования реакции необходимо смесь А. и галогена облучить УФ-светом или нагреть.

Хлорирование метана не останавливается на стадии получения метилхлорида (если взяты эквимолярные количества хлора и метана), а приводит к образованию всех возможных продуктов замещения, от хлорметана до тетрахлорметана. Хлорирование других А. приводит к смеси продуктов замещения водорода у разных атомов углерода. Соотношение продуктов хлорирования зависит от температуры. Скорость хлорирования первичных, вторичных и третичных атомов зависит от температуры, при низкой температуре скорость убывает в ряду: третичный, вторичный, первичный. При повышении температуры разница между скоростями уменьшается до тех пор, пока не становится одинаковой. Кроме кинетического фактора на распределение продуктов хлорирования оказывает влияние статистический фактор: вероятность атаки хлором третичного атома углерода в 3 раза меньше, чем первичного, и в 2 раза меньше, чем вторичного. Таким образом, хлорирование А. является нестереоселективной реакцией, исключая случаи, когда возможен только один продукт монохлорирования.

Стоит отметить, что галогенирование происходит тем легче, чем длиннее углеродная цепь н-алкана. В этом же направлении уменьшается энергия ионизации молекулы вещества, то есть, А. легче становится донором электрона.

Галогенирование — это одна из реакций замещения. В первую очередь галогенируется наименее гидрированый атом углерода (третичный атом, затем вторичный, первичные атомы галогенируются в последнюю очередь). Галогенирование А. проходит поэтапно — за один этап замещается не более одного атома водорода:

  1. CH4 + Cl2 → CH3Cl + HCl (хлорметан)

  2. CH3Cl + Cl2 → CH2Cl2 + HCl (дихлорметан)

  3. CH2Cl2 + Cl2 → CHCl3 + HCl (трихлорметан)

  4. CHCl3 + Cl2 → CCl4 + HCl (тетрахлорметан).

Под действием света молекула хлора распадается на радикалы, затем они атакуют молекулы А., забирая у них атом водорода, в результате этого образуются метильные радикалы ·СН3, которые сталкиваются с молекулами хлора, разрушая их и образуя новые радикалы. 

Бромирование А. отличается от хлорирования более высокой стереоселективностью из-за большей разницы в скоростях бромирования третичных, вторичных и первичных атомов углерода при низких температурах.

Иодирование А. иодом не происходит, получение иодидов прямым иодированием осуществить нельзя.

С фтором и хлором реакция может протекать со взрывом, в таких случаях галоген разбавляют азотом или подходящим растворителем.

Сульфохлорирование (реакция Рида):
При облучении УФ-светом А. реагируют со смесью SO2 и Cl2, После того, как с уходом хлороводорода образуется алкильный радикал, присоединяется диоксид серы. Образовавшийся сложный радикал стабилизируется захватом атома хлора с разрушением очередной молекулы последнего.

Образовавшиеся сульфонилхлориды широко применяются в производстве ПАВ. 

А.  реагируют с 10 % раствором азотной кислоты или оксидом азота NO2 в газовой фазе при температуре 140 °C и небольшом давлении с образованием нитропроизводных.

RH + HNO3 → RNO2 + H2O.

Все имеющиеся данные указывают на свободнорадикальный механизм. В результате реакции образуются смеси продуктов.

Реакции окисления:

  • Горение

Основным химическим свойством предельных углеводородов, определяющих их использование в качестве топлива, является реакция горения. Пример:

CH4 + 2O2 → CO2 + 2H2O + Q.

Значение Q достигает 46 000 — 50 000 кДж/кг.

В случае нехватки кислорода вместо углекислого газа получается угарный газ или уголь (в зависимости от концентрации кислорода).

В общем виде реакцию горения А. можно записать следующим образом:

СnН2n+2 +(1,5n+0,5)O2 → nCO2 + (n+1)H2O.

  • Каталитическое окисление

Могут образовываться спирты, альдегиды, карбоновые кислоты.

При мягком окислении СН4 в присутствии катализатора кислородом при 200 °C) могут образоваться:

  • метиловый спирт: 2СН4 + О2 → 2СН3ОН;

  • формальдегид: СН4 + О2 → СН2О + Н2O;

  • муравьиная кислота: 2СН4 + 3О2 → 2НСООН + 2Н2O.

Окисление также может осуществляться воздухом. Процесс проводится в жидкой или газообразной фазе. В промышленности так получают высшие жирные спирты и соответствующие кислоты.

Термические превращения А.:

  • Разложение

Реакции разложения происходят лишь под влиянием больших температур. Повышение температуры приводит к разрыву углеродной связи и образованию свободных радикалов.

Примеры:

CH4 → C + 2H2 (t > 1000 °C).

C2H6 → 2C + 3H2.

  • Крекинг

При нагревании выше 500 °C А. подвергаются пиролитическому разложению с образованием сложной смеси продуктов, состав и соотношение которых зависят от температуры и времени реакции. При пиролизе происходит расщепление углерод-углеродных связей с образованием алкильных радикалов.

В 1930—1950 гг. пиролиз высших А. использовался в промышленности для получения сложной смеси алканов и А., содержащих от пяти до десяти атомов углерода. Он получил название «термический крекинг». С помощью термического крекинга удавалось увеличить количество бензиновой фракции за счёт расщепления алканов, содержащихся в керосиновой фракции (10—15 атомов углерода в углеродном скелете) и фракции солярового масла (12—20 атомов углерода). Однако октановое число бензина, полученного при термическом крекинге, не превышает 65, что не удовлетворяет требованиям условий эксплуатации современных двигателей внутреннего сгорания.

В настоящее время термический крекинг полностью вытеснен в промышленности каталитическим крекингом, который проводят в газовой фазе при более низких температурах — 400—450 °Cи низком давлении — 10—15 атм на алюмосиликатном катализаторе, который непрерывно регенерируется сжиганием образующегося на нём кокса в токе воздуха. При каталитическом крекинге в полученном бензине резко возрастает содержание алканов с разветвлённой структурой.

Для метана:

CH4 → С + 2H2 — при 1000 °C.

Частичный крекинг:

2CH4 → C2H2 + 3H2 — при 1500 °C.

  • Дегидрирование

Образование:

1)В углеродном скелете 2 (этан) или 3 (пропан) атома углерода — получение (терминальных) алкенов, так как других в данном случае не может получиться; выделение водорода:

Условия протекания: 400—600 °C, катализаторы — Pt, Ni, Al2O3, Cr2O3.

а)CH3-CH3 → CH2=CH2 + H2 (этан → этен);

б)CH3-CH2-CH3 → CH2=CH-CH3 + H2 (пропан → пропен).

2)В углеродном скелете 4 (бутан, изобутан) или 5 (пентан, 2-метилбутан, неопентан) атомов углерода — получение алкадиенов; выделение водорода:

в)CH3-CH2-CH2-CH3 → CH2=CH-CH=CH2 + 2H2 (бутан → бутадиен-1,3).

в')CH3-CH2-CH2-CH3 → CH2=C=CH-CH3 + 2H2 (бутан → бутадиен-1,2) (ЭТО — ОДНА РЕАКЦИЯ!)

3) В углеродном скелете 6 (гексан) и более атомов углерода — получение бензола и его производных:

г) CH3-CH2-CH2-CH2CH2-CH2-CH2-CH3 (октан) → П.-ксилол, параллельно М.-ксилол, параллельно этилбензол + 3H2.

Конверсия метана

В присутствии никелевого катализатора протекает реакция:

CH4 + H2O → CO + H2.

Продукт этой реакции (смесь CO и H2) называется «синтез-газом». 

Изомеризация:
Под действием катализатора (например, AlCl3) происходит изомеризация А.: например, бутан (C4H10), взаимодействуя с хлоридом алюминия (AlCl3), превращается из н-бутана в 2-метилпропан.

С марганцовокислым калием (KMnO4) и бромной водой (Br2) А. не взаимодействуют. 

В небольших количествах А. содержатся в атмосфере внешних газовых планет Солнечной системы: на Юпитере — 0,1 % метана, 0,0002 % этана, на Сатурне метана 0,2 %, а этана — 0,0005 %, метана и этана на Уране — соответственно 1,99 % и 0,00025 %, на Нептуне же — 1,5 % и 1,5·10−10, соответственно. На спутнике Сатурна Титане метан (1,6 %) содержится в жидком виде, причем, подобно воде, находящейся на Земле в круговороте, на Титане существуют (полярные) озёра метана (в смеси с этаном) и метановые дожди. К тому же, как предполагается, метан поступает в атмосферу Титана в результате деятельности вулкана. Кроме того, метан найден в хвосте кометы Хиякутаке и в метеоритах (углистых хондритах). Предполагается также, что метановые и этановые кометные льды образовались в межзвёздном пространстве. 

В земной атмосфере метан присутствует в очень небольших количествах (около 0,0001 %), он производится некоторыми археями (архебактериями), в частности, находящимися в кишечном тракте крупного рогатого скота. Промышленное значение имеют месторождения низших алканов в формеприродного газа, нефти и, вероятно, в будущем — газовых гидратов (найдены в областях вечной мерзлоты и под океанами). Также метан содержится вбиогазе.

Высшие алканы содержатся в кутикуле растений, предохраняя их от высыхания, паразитных грибков и мелких растительноядных тварей. Это обыкновенно цепи с нечётным числом атомов углерода, образующиеся при декарбоксилировании жирных кислот с чётным количеством углеродных атомов. Среди животных алканы встречаются в качестве феромонов у насекомых, в частности у мухи цеце (2-метилгептадекан C18H38, 17,21-диметилгептатриаконтан C39H80, 15,19-диметилгептатриаконтан C39H80 и 15,19,23-триметилгептатриаконтан C40H82). Некоторые орхидеи при помощи А.-феромонов привлекают опылителей. 

Главным источником А. (а также других углеводородов) являются нефть и природный газ, которые обычно встречаются совместно.

Восстановление галогенпроизводных А.:
При каталитическом гидрировании в присутствии палладия галогеналканы превращаются в А.:

R—CH2Cl + H2 → R—CH3 + HCl

Восстановление иодалканов происходит при нагревании последних с иодоводородной кислотой:

R—CH2I + HI → R—CH3 + I2

Для восстановления галогеналканов пригодны также амальгама натрия, гидриды металлов, натрий в спирте, цинк в соляной кислоте или цинк в спирте.

Восстановление спиртов:
Восстановление спиртов приводит к образованию углеводородов, содержащих то же количество атомов С. Так, например, проходит реакция восстановления бутанола (C4H9OH), проходящую в присутствии LiAlH4. При этом выделяется вода.

H3C—CH2—CH2—CH2OH → H3C—CH2—CH2—CH3 + H2O

Loading

Календарь

«  Сентябрь 2019  »
ПнВтСрЧтПтСбВс
      1
2345678
9101112131415
16171819202122
23242526272829
30

Архив записей

Друзья сайта

  • Заказать курсовую работу!
  • Выполнение любых чертежей
  • Новый фриланс 24