Центральный Дом Знаний - Аллотропия

Информационный центр "Центральный Дом Знаний"

Заказать учебную работу! Жми!



ЖМИ: ТУТ ТЫСЯЧИ КУРСОВЫХ РАБОТ ДЛЯ ТЕБЯ

      cendomzn@yandex.ru  

Наш опрос

Я учусь (закончил(-а) в
Всего ответов: 2690

Онлайн всего: 1
Гостей: 1
Пользователей: 0


Форма входа

Логин:
Пароль:

Аллотропия

Аллотропия (от греч. állos — другой и trópos — поворот, свойство), существование одного и того же химического элемента в виде двух или нескольких простых веществ, различных по строению и свойствам, т. н. аллотропических модификаций. А. может быть результатом образования молекул с различным числом атомов (например, кислород O2 и озон O3) или образования различных кристаллических форм (например, графит и алмаз); в этом случае А. — частный случай полиморфизма.


АЛЛОТРОПИЯ — существование одного и того же химии, элемента в виде двух или нескольких про­стых веществ. Эти последние называются аллотроиич. формами, или модификациями Термин «А.» был пред­ложен в 1841. Дли встречающихся в природе 88 эле­ментов известно св. 400 простых веществ. Аллотро­пия, модификации обычно обозначаются буквами греч. алфавита, напр. S,— сера ромбическая, S3 — сера моноклиническая и т. д. Когда аллотропия, модифи­кации могут взаимно превращаться друг в друга, то у них существует т. н. точка перехода. Напр., ниже 96° устойчива Sa, а выше этой температуры — такие модификации называются энантиотроинымй. В случае, когда существует лишь переход одной формы в другую, но нет обратного перехода, следова­тельно, когда нет такой температуры, при к-рой обе формы находятся в равновесии, эти формы назы­ваются монотропными. Явление А. вызывается тем, что: 1) хи.мич. элемент может образовывать кристал­лы различных кристаллография, систем, и тогда А. является частным случаем полиморфизма; 2) аллотроиич. формы могут различаться числом атомов в молекуле, наир. жидкая сера  сущест­вует в двух формах S> и S,: первая состоит из молекул SB в виде восьмичленных колен, вторая — из молекул S6 в виде открытых неночек неправильной формы; переход в Su объясняет своеобразие свойств жидкой серы. Другой пример А., обусловленной неодинаковым составом молекул обеих аллотропич. форм, дают кислород и озон, т. е. З02^203. Явле­ние А. присуще многим элементам. Обе причины А. вызваны химич. связями между атомами элемента и разнообразием форм их проявления.

Особое значение приобрёл полиморфизм железа, после открытия русским металлургом Д. К. Черновым в 1868 критических точек для стали («точек а и Ъ Чернова»), Сталь, имеющая температуру ниже 700°, т. е. ниже точки а, не при­нимает закалки. Если копка стали заканчивается при температуре, соответствующей точке b (800— 850°), то по охлаждении сталь имеет мелкозернистое строение. Эти точки Чернова непосредственно свя­заны с крпгич. точками переходов аллотропич. форм железа. С понятием А. тесно связано развитие Д. И. Менделеевым понятия простого вещества (в отлично от понятия химич. элемента).


Аллотро́пия (от др.-греч. αλλος — «другой», τροπος — «поворот, свойство»), существование одного и того же химического элемента в виде двух и более простых веществ, различных по строению и свойствам — так называемых аллотропических модификаций или аллотропических форм. 

 Примеры

  • Водород может существовать в двух формах (модификациях) — в виде орто- и пара-водорода. В молекуле ортоводорода o-H2 (т. пл. −259,10 °C, т. кип. −252,56 °C) ядерные спинынаправлены одинаково (параллельны), а у параводорода p-H2 (т. пл. −259,32 °C, т. кип. −252,89 °C) — противоположно друг другу (антипараллельны).

  • О2 — кислород и О3 — озон. Кислород бесцветен, не имеет запаха, озон же пахуч, имеет бледно-фиолетовый цвет, он более бактерициден.

  • Красный фосфор и белый фосфор. Белый фосфор ядовит, светится в темноте, способен самовоспламеняться, красный фосфор не ядовит, не светится в темноте, сам по себе не воспламеняется.

  • Множество модификаций углерода, например: нанотрубка, лонсдейлит, алмаз, графит, фуллерен, карбин и графен.

  • У серы существует 3 аллотропных модификации: ромбическая, моноклинная и пластическая. 

А. может быть результатом образования молекул с различным числом атомов (например, атомарный кислород O, молекулярный кислород O2 и озон O3) или образования различныхкристаллических форм (например, графит и алмаз) — в этом случае аллотропия — частный случай полиморфизма.


Allotropy or allotropism is the property of some chemical elements to exist in two or more different forms, known as allotropes of these elements. Allotropes are different structural modifications of an element;  the atoms of the element are bonded together in a different manner.

Take carbon for example: 4 common allotropes of carbon are diamond (where the carbon atoms are bonded together in a tetrahedral lattice arrangement), graphite (where the carbon atoms are bonded together in sheets of a hexagonal lattice), graphene (single sheets of graphite), andfullerenes (where the carbon atoms are bonded together in spherical, tubular, or ellipsoidal formations).

The term allotropy is used for elements only, not for compounds. The more general term, used for any crystalline material, is polymorphism. Allotropy refers only to different forms of an element within the same phase (i.e. different solid, liquid or gas forms); the changes of state between solid, liquid and gas in themselves are not considered allotropy.

For some elements, allotropes have different molecular formulae which can persist in different phases – for example, two allotropes of oxygen(dioxygen, O2 and ozone, O3), can both exist in the solid, liquid and gaseous states. Conversely, some elements do not maintain distinct allotropes in different phases – for example phosphorus has numerous solid allotropes, which all revert to the same P4 form when melted to the liquid state. 

The concept of allotropy was originally proposed in 1841 by the Swedish scientist Baron Jöns Jakob Berzelius (1779–1848) who offered no explanation.  The term is derived from the Greek άλλοτροπἱα (allotropia; variability, changeableness).  After the acceptance of Avogadro's hypothesis in 1860 it was understood that elements could exist as polyatomic molecules, and the two allotropes of oxygen were recognized as O2 and O3. In the early 20th century it was recognized that other cases such as carbon were due to differences in crystal structure.

By 1912, Ostwald noted that the allotropy of elements is just a special case of the phenomenon of polymorphism known for compounds, and proposed that the terms allotrope and allotropy be abandoned and replaced by polymorph and polymorphism. Although many other chemists have repeated this advice, IUPAC and most chemistry texts still favour the usage of allotrope and allotropy for elements only. 

Allotropes are different structural forms of the same element and can exhibit quite different physical properties and chemical behaviours. The change between allotropic forms is triggered by the same forces that affect other structures, i.e. pressure, light, and temperature. Therefore the stability of the particular allotropes depends on particular conditions. For instance, iron changes from a body-centered cubic structure (ferrite) to a face-centered cubic structure (austenite) above 906 °C, and tin undergoes a transformation known as tin pest from a metallic phase to a semiconductor phase below 13.2 °C. As an example of different chemical behaviour, ozone (O3) is a much stronger oxidizing agent than dioxygen (O2).

Typically, elements capable of variable coordination number and/or oxidation states tend to exhibit greater numbers of allotropic forms. Another contributing factor is the ability of an element tocatenate. Allotropes are typically more noticeable in non-metals (excluding the halogens and the noble gases) and metalloids. Nevertheless, metals tend to have many allotropes.

Examples of allotropes include:

 Non-metals

Element

Allotropes

Carbon

  • Diamond - an extremely hard, transparent crystal, with the carbon atoms arranged in a tetrahedral lattice. A poor electrical conductor. An excellent thermal conductor.

  • Lonsdaleite - also called hexagonal diamond.

  • Graphite - a soft, black, flaky solid, a moderate electrical conductor. The C atoms are bonded in flat hexagonal lattices (graphene), which are then layered in sheets.

  • Linear acetylenic carbon (Carbyne)

  • Amorphous carbon

  • Fullerenes, including Buckminsterfullerene, aka "buckyballs", such as C60.

  • Carbon nanotubes - allotropes of carbon with a cylindrical nanostructure.

Phosphorus:

  • White phosphorus - crystalline solid P4

  • Red phosphorus - polymeric solid

  • Scarlet phosphorus

  • Violet phosphorus

  • Black phosphorus - semiconductor, analogous to graphite

  • Diphosphorus

Oxygen:

  • dioxygen, O2 - colorless (faint blue)

  • Ozone, O3 - blue

  • Tetraoxygen, O4 - metastable

  • Octaoxygen, O8 - red

Sulfur:

  • Plastic (amorphous) sulfur - polymeric solid

  • Rhombic sulfur - large crystals composed of S8 molecules

  • Monoclinic sulfur - fine needle-like crystals

  • Other ring molecules such as S7 and S12

Selenium:

  • "Red selenium," cyclo-Se8

  • Gray selenium, polymeric Se

  • Black selenium

 Metalloids

Element

Allotropes

Boron:

  • Amorphous boron - brown powder

  • α-rhombohedral boron

  • β-rhombohedral boron

  • γ-boron

  • Tetragonal boron phases

  • High-pressure superconducting phase

Silicon:

  • Amorphous silicon - brown powder

  • Polycrystalline silicon - has a metallic luster and a grayish color. Single crystals of crystalline silicon can be grown with a process known as the Czochralski process

  • Monocrystalline silicon

Arsenic:

  • Yellow arsenic - molecular non-metallic As4

  • Gray arsenic, polymeric As (metalloid)

  • Black arsenic (metalloid) and several similar other ones.

Germanium

  • α-germanium -

  • β-germanium - at high pressures

Antimony

  • blue-white antimony - the stable form (metalloid)

  • yellow antimony (non-metallic)

  • black antimony (non-metallic)

  • 'Explosive'

Among the naturally occurring metallic elements (up to U, without Tc and Pm), 28 are allotropic at ambient pressure: Li, Be, Na, Ca, Sr, Ti, Mn, Fe, Co, Sr, Y, Zr, Sn, La, Ce, Pr, Nd, (Pm), Sm, Gd, Tb, Dy, Yb, Hf, Tl, Po, Th, Pa, U. Considering only the technologically-relevant metals,  six metals are allotropic: Ti at 882˚C, Fe at 912˚C and 1394˚C, Co at 422˚C, Zr at 863˚C, Sn at 13˚C and U at 668˚C and 776˚C.

Element

Allotropes

Tin

  • grey tin (alpha-tin)

  • white tin (beta tin)

  • rhombic tin (gamma)

Iron

  • ferrite (alpha iron) - forms below 770°C (the Curie point, TC); the iron becomes magnetic in its alpha form; BCC

  • beta - forms below 912°C (BCC)

  • gamma - forms below 1,394°C; face centred cubic (FCC) crystal structure

  • delta - forms from cooling down molten iron below 1,538°C; has a body-centred cubic (BCC) crystal structure

Loading

Календарь

«  Апрель 2024  »
ПнВтСрЧтПтСбВс
1234567
891011121314
15161718192021
22232425262728
2930

Архив записей

Друзья сайта

  • Заказать курсовую работу!
  • Выполнение любых чертежей
  • Новый фриланс 24