Центральный Дом Знаний - Пределы по Математическому анализу и линейной алгебре

Информационный центр "Центральный Дом Знаний"

Заказать учебную работу! Жми!



ЖМИ: ТУТ ТЫСЯЧИ КУРСОВЫХ РАБОТ ДЛЯ ТЕБЯ

      cendomzn@yandex.ru  

Наш опрос

Я учусь (закончил(-а) в
Всего ответов: 2668

Онлайн всего: 1
Гостей: 1
Пользователей: 0


Форма входа

Логин:
Пароль:

Пределы по Математическому анализу и линейной алгебре

Пределы

Основные понятия и определения

Определение: Функция называется бесконечно малой величиной (БМВ) при или при , если ее предел равен нулю:

.

Свойства бесконечно малых величин:

  • алгебраическая сумма конечного числа бесконечно малых величин есть величина бесконечно малая;

  • произведение БМВ на ограниченную функцию есть БМВ;

  • частное от деления БМВ на функцию, предел которой отличен от 0, есть БМВ.

Определение: Функция называется бесконечно большой величиной (ББВ) при или при , если ее предел равен бесконечности.


!!! Если - БМВ при или при , то функция является ББВ при или при . Верно и обратное утверждение.

Свойства бесконечно больших величин:

  • сумма ББВ и ограниченной функции, есть ББВ;

  • произведение ББВ на функцию, предел которой отличен от 0 есть ББВ;

  • частное от деления ББВ на функцию, имеющую предел, есть ББВ.


Основные теоремы о пределах

  1. Функция не может иметь более одного предела.

  2. Предел алгебраической суммы конечного числа функций равен такой же сумме пределов этих функций.

  3. Предел произведения конечного числа функций равен произведению пределов этих функций.

  4. Предел постоянной величины равен этой постоянной.

  5. Предел частного двух функций равен частному пределов этих функций (при условии, что предел делителя не равен 0).

  6. Если .

Виды неопределенностей

.

!!! Основной задачей при вычислении пределов является устранение неопределенностей с помощью алгебраических преобразований.

  1. для неопределенности вида :

  • Если в числителе и знаменателе сложные степенные или показательные функции и . Вычисление пределов в случае отношения степенных функций производится путем вынесения за скобку в числителе и знаменателе дроби переменной x в наибольшей степени среди всех слагаемых дроби (неопределенность устраняется после сокращения дроби и применения основных теорем о пределах); в случае показательных функций за скобку выносится наибольшее слагаемое.

  • Правило Лопиталя: Предел отношения двух бесконечно малых или бесконечно больших функций равен пределу отношения их производных (конечному или бесконечному), если последний существует в указанном смысле, т.е.

.

  1. для неопределенности вида :

  • Если возможно, то числитель и знаменатель разложить на множители. Неопределенность устраняется после сокращения дроби.

  • Числитель и знаменатель дроби домножить на одно и то же выражение, приводящее к формулам сокращенного умножения. Неопределенность устраняется после сокращения дроби.

Формулы сокращенного умножения:

(a-b)(a+b)= a2-b2

(a-b)(a2+ab+b2)=a3-b3

  • Правило Лопиталя.

  1. для неопределенности вида [0]:

  • Выражение, представляющее собой произведение функций, нужно преобразовать в частное (не меняя смысла). После чего неопределенность преобразуется к виду или .

  1. для неопределенности вида []:

  • Если функция, стоящая под знаком предела, представляет собой сумму или разность дробей, то неопределенность или устраняется, или приводится к типу после приведения к общему знаменателю.

  • Если функция, стоящая под знаком предела, представляет собой разность или сумму иррациональных выражений, то неопределенность или устраняется, или приводится к типу путем домножения и деления функции на одно и то же выражение, приводящее к формулам сокращенного умножения.

  1. для неопределенности вида []:

  • Выражение, стоящее под знаком предела представляет собой степенно-показательную функцию (в основании которой необходимо выделить целую часть дроби). Неопределенность устраняется при помощи выделения второго замечательного предела.

Формула второго замечательного предела:

;

.

Loading

Календарь

«  Июль 2020  »
ПнВтСрЧтПтСбВс
  12345
6789101112
13141516171819
20212223242526
2728293031

Архив записей

Друзья сайта

  • Заказать курсовую работу!
  • Выполнение любых чертежей
  • Новый фриланс 24