Центральный Дом Знаний - Абсолютно непрерывные функции

Информационный центр "Центральный Дом Знаний"

Заказать учебную работу! Жми!



ЖМИ: ТУТ ТЫСЯЧИ КУРСОВЫХ РАБОТ ДЛЯ ТЕБЯ

      cendomzn@yandex.ru  

Наш опрос

Я учусь (закончил(-а) в
Всего ответов: 2691

Онлайн всего: 35
Гостей: 35
Пользователей: 0


Форма входа

Абсолютно непрерывные функции

Абсолютно непрерывной называется такая функция ¦, заданная на отрезке [a,b], что какова бы ни была система попарно непересекающихся интервалов (ak,bk) с суммой длин меньшей d, сумма модулей разностей значений функции ¦ в концах интервалов меньше чем e.

Утв. Всякая абсолютно непрерывная ф-я имеет ограниченное изменение.

Теорема. Функция , представляющая собой неопределенный интеграл суммируемой ф-и, абсолютно непрерывна.

Метрическое пр-во. Определение и примеры. Полнота. Теорема о вложенных шарах в метрическом пр-ве.

Полугруппой наз. множество объектов, если для его элементов определена замкнутая ассоциативная бинарная операция.

Группой наз. множество объектов, если для его элементов определена замкнутая ассоциативная бинарная операция и существует единица.

Кольцо - множество объектов с двумя бинарными операциями, являющееся группой по одной из операций, и полугруппой по второй операции, причем для элементов кольца справедлив закон ассоциативности и дистрибутивности.

Поле – кольцо с единицей, содержащее элементы отличные от нуля, для каждого из которых определен обратный элемент по "умножению” (являющееся группой по умножению).

Линейным векторным пр-вом над кольцом наз. множество объектов называемых векторами с определенными операциями векторного сложения и умножения вектора на скаляр, такими, что это множество является группой по векторному сложению и справедливы законы ассоциативности и дистрибутивности для умножения на скаляр.

Выпуклым подмножеством Е векторного пр-ва Х называется такое его подмножество, что для любых его двух элементов х и у и числа q из [0, 1] элемент qх+(1-q)у принадлежит Е.

Уравновешенным подмножеством Е векторного пр-ва Х называется такое его подмножество, что для любого х из Е и числа q, по модулю не превосходящего единицы элемент qх принадлежит Е.

Абсолютно выпуклым подмножеством Е векторного пр-ва Х называется такое его подмножество, что для любых его двух элементов х и у и числа любых двух чисел a b : 1³ |a|+|b| элемент aх+bу принадлежит Е.

Поглощающим подмножеством Е векторного пр-ва Х называется такое его подмножество, что для любого х из Х существует число a большее нуля, что для все чисел b по модулю не меньших a найдется элемент у из Е, что х равен bу.

Калибровочной функцией векторного пр-ва Х называется такая функция р(х): Х®R, что для нее выполнены следующие условия:

Для любого скаляра из К выполнена аксиома уравновешенности: "aÎК р(aх)= a×р(х).

Выполнено нер-во треугольника: р(х)+ р(у)³ р(х+у).

Полунормой векторного пр-ва Х называется такая функция р(х): Х®R, что для нее выполнены следующие условия:

Для любого скаляра из К выполнена аксиома уравновешенности: "aÎК ||aх||= |a|×||х||.

Выполнено нер-во треугольника: р(х)+ р(у)³ р(х+у).

Утв. Пусть р(a) – неотр. калибровочная ф-я. Тогда мн-во Еl={х: р(х)0 $d>0, справедливо |¦(х)-¦(у)|0 p(ax)= ap(x).

Однородно-выпуклым фун-лом называется положительно-однородным выпуклый фун-л.

Продолжением лин-ого фун-ла ¦0, определенного на подпространстве X0 действительного лин-ого пр-ва X называется такой лин-ый фун-л ¦, определенный на X, что¦(x)=¦0(x) для всех x из X0.

Подчиненным фун-лу p(x) на действительном лин-ом пр-ве X называется такой фун-л ¦, что ¦(x)£p(x) для всех x из X.

Теорема Хана-Банаха. Пусть p – однородно-выпуклый фун-л, заданный на действительном лин-ом пр-ве X, и пусть X0 – лин-ое подпр-во X. Пусть ¦0 лин-ый фун-л на X0 , подчиненные на X0 p(x). Тогда ¦0 может быть продолжен до лин-ого фун-ла ¦ на X, подчиненного p(x) на всем X.

Теорема Хана-Банаха в комплексном случае. Ее следствия.

Однородно-выпуклым на комплексном лин-ом пр-ве X мы будем называть такой неотрицательный фун-л p, что для всех x,y из X и всех комплексных чисел l справедливы соотношения: p(x+y)£p(x)+p(y), p(lx)=| l|p(x).

Теорема Хана-Банаха в комплексном случае. Пусть p – однородно-выпуклый фун-л на комплексном пр-ве X, и пусть X0 – лин-ое подпр-во X. Пусть ¦0 лин-ый фун-л на X0, такой, что |¦0 (x)|£p(x) для x из X0. Тогда Существует лин-ый фун-л ¦, являющийся продолжением ¦0, такой, что |¦ (x)|£p(x) для x из X.

Непрерывные лин-ые фун-лы на пр-вах Lp (прямая теорема).

Непрерывные лин-ые фун-лы на пр-вах Lp (обратная теорема).

Непрерывные лин-ые фун-лы на гильбертовом пр-ве.

Непрерывные лин-ые фун-лы на С[а,в] (прямая теорема).

Сопряженные операторы.

Сопряженным пр-вом A* к лин-ому топологическому пр-ву A называется совокупность всех непрерывных лин-ых фун-лов на A.

Сопряженным оператором к лин-ому оператору A, отображающему лин. пр-во X в Y называется такой лин. оператор A*, который отображает пр-во Y* в X*.

Теорема Банаха-Штейнгауза.

Существование непрерывных функций с расходящимися рядами Фурье.

Слабая сходимость. * слабая компактность единичного шара в пр-ве, сопряженном к сепарабельному.

Loading

Календарь

«  Январь 2025  »
ПнВтСрЧтПтСбВс
  12345
6789101112
13141516171819
20212223242526
2728293031

Архив записей

Друзья сайта

  • Заказать курсовую работу!
  • Выполнение любых чертежей
  • Новый фриланс 24