Центральный Дом Знаний - "Инкарнация" кватернионов

Информационный центр "Центральный Дом Знаний"

Заказать учебную работу! Жми!



ЖМИ: ТУТ ТЫСЯЧИ КУРСОВЫХ РАБОТ ДЛЯ ТЕБЯ

      cendomzn@yandex.ru  

Наш опрос

Как Вы планируете отдохнуть летом?
Всего ответов: 854



"Инкарнация" кватернионов

 "Инкарнация" кватернионов

Вводные замечания

Кватернион, долгие годы считавшийся бесперспективным с подачи ортодоксальных математиков [1], в настоящее время начинает свое триумфальное шествие по науке (физика, химия кристаллов, информатика) и информационно-интерактивным технологиям.

Своим открытием и названием сам кватернион обязан ирландскому математику У.Р. Гамильтону (1805–1865) [2].

Уильям Роуан Гамильтон был человеком многосторонне развитым. В четырнадцать лет владел девятью языками, в 19 лет опубликовал в трудах Королевской Ирландской Академии работу, посвященную геометрической оптике, а в 23 года получил звание королевского астронома Ирландии. К 1833 г. Гамильтон занимал пост директора обсерватории в Денсинке и был известен работами по оптике и аналитической механике. Он предсказал эффект двойной конической рефракции в двуосных кристаллах.

В числе других математических задач он 10 лет безуспешно пытался найти описание поворотов трехмерного пространства на основе алгебры трехмерных чисел, пока не увидел, что их описание соответствует другой алгебре не с двумя мнимыми числами, а с тремя. Общепризнанно, что от типа алгебры, которой подчинена та или иная природная система, зависят ее геометрия, физические законы сохранения.

В одном из писем к своему сыну У.Р. Гамильтон писал: «Это был 16-й день октября, который случился в понедельник, в день заседания Совета Королевской Ирландской Академии, где я должен был председательствовать. Я направлялся туда с твоей матерью вдоль Королевского канала; и, хотя она говорила мне какие-то отдельные фразы, я их почти не воспринимал, так как в моем сознании подспудно что-то творилось. Неожиданно как будто бы замкнулся электрический контур; блеснула искра, предвещающая многие длительные годы определенно направленной мысли и труда, моего – если доведется, или труда других, если мне будет даровано достаточно сознательной жизни, чтобы сообщить о своем открытии. Я оказался не в состоянии удержаться от желания высечь ножом на мягком камне Брогемского моста фундаментальную формулу о символах i, j, k, содержащую решение проблемы, но, конечно, эта запись с тех пор стерлась. Однако более прочное упоминание осталось в Книге записей Совета Академии за этот день, где засвидетельствовано, что я попросил и получил разрешение на доклад о кватернионах на первом заседании сессии, который и был прочитан соответственно в Понедельник 13-го следующего месяца – ноября».

Стоит упомянуть, что оригинальное описание движения твердого тела с помощью кватерниона дал в 1873 году У. Клиффорд (1845–1879), а А.П. Котельникову (1865–1944) в 1895 году удалось истолковать все формулы теории кватернионов, как «неразвернутые» формулы теории обобщенных, т.н. дуальных кватернионов [3–6]. Применительно к кинематике этот подход устанавливает соотношение между движениями тела с одной неподвижной точкой и движениями произвольного вида [7].

Постановка проблемы

В различных разделах математики возникает потребность рассматривать векторные пространства (над данным полем k), в которых кроме действий сложения и умножения на скаляры определено еще действие умножения, сопоставляющее каждой упорядоченной паре векторов третий вектор того же пространства – их произведение. В этой ситуации всегда естественно предполагать, что результат умножения λy линеен по каждому из множителей при фиксированном втором, то есть:

,  


Пространство с умножением, удовлетворяющим такому требованию билинейности, называется алгеброй над полем k.

Алгеброй кватернионов называется алгебра размерности 4 над основным полем, обладающим единицей 1 и имеющим базис 1, i, j, k со следующей таблицей умножения [1]:

x i j k

i -1 k j

j – k -1 i

k – j – i -1

Или в более удобной форме:      


При этом основное поле может быть взято произвольно.

Алгебра кватернионов над полем R

Наиболее интересной является алгебра кватернионов над полем R вещественных чисел.

Прежде всего, установим ассоциативность алгебры кватернионов. Для этого следует проверить 27 равенств: по три возможности для каждого из 3-х множителей в равенствах типа (ab) c=а(bc), проверяемых для базисных элементов i, j, k.

Избежать этого можно, установив изоморфизм алгебры кватернионов над   и некоторой алгебры матриц специального вида над C. Единице сопоставим единичную матрицу 2-го порядка, матрицу (здесь i – мнимая единица,  ), матрицу   и матрицу  .

Отсюда следуют равенства:  (проверить знак)       Они означают, что пространство матриц Е, I, Y, K образуют алгебру, изоморфную алгебре кватернионов.

На основании ассоциативности умножения матриц делаем заключение об ассоциативности алгебры кватернионов.

Заметим, что если за основное поле принято поле C комплексных чисел, то алгебра кватернионов над C окажется изоморфной алгебре М2(C) всех квадратных матриц 2-го порядка над C, ибо матрицы Е, I, J, K линейно независимы над C и их линейные комбинации заполняют всю алгебру М2(C).

Связь алгебры кватернионов с векторами в трехмерном эвклидовом пространстве

Пусть α = а + вi + сj + dk – кватернион. Число а называется скалярной частью кватерниона. Сумма вi + сj + dk называется векторной частью кватерниона α. Кватернион с нулевой скалярной частью будем называть векторами, они, естественно, изображаются как векторы трехмерного эвклидова пространства.

Пусть   и   – два вектора-кватерниона. Вычислим их произведение (в алгебре кватернионов):

Здесь   – векторное, а (u1, u2) – скалярное произведение кватернионов U1 и U2. Таким образом, скалярной частью кватерниона-произведения U1U2 оказывается скалярное произведение векторов u1 и u2, взятое с обратным знаком. Векторная же часть кватерниона u1u2 равна вектору произведения векторов u1, u2. Тем самым операция умножения векторов как элементов алгебры кватернионов как бы объединяет оба умножения векторов – скалярное и векторное.

Далее, можно видеть, что:


Отсюда,  


Из последней формулы следует известное в векторной алгебре соотношение Якоби для условных u1, u2, u3:

[u1, u2, u3] + [[u2, u3], u1] + [[u3, u1], u2] = 0.


Для этого достаточно принять во внимание связь между ассоциативными алгебрами и алгебрами Ли.

Алгебра кватернионов как алгебра с делением

Пусть дан кватернион α = а + вi + сj + dk = а + u.

Кватернион   = а – вi – сj – dk = а – u, отличающийся от α знаком векторной части, называется сопряженным с кватернионом α. Ясно, что  .

Умножим кватернион α на сопряженный ему  . Получим


α = (а + u) (а – u) = а2 + аu – аu – u2 = a2 + (u, u) – [u, u] = а2 + (u, u) = а2 + в2 + с2 + d2.


Поэтому, если α ≠0, то α >0. Заметим еще, что α = α.

Число   называется модулем (нормой) кватерниона α и обозначается через модуль  . Теперь легко установить, что каждый, отличный от 0 кватернион α имеет обратный. Действительно,  , так что обратным кватернионом для кватерниона α является  . Таким образом, алгебра кватернионов над полем R есть алгебра с делением. Заметим, что здесь существенно было использовано то обстоятельство, что за основное поле принято поле R, заключение о неравенстве a2 + b2 + d2 ≠ 0 при α ≠0 было бы неверно, например, для поля C или для вычетов по простому модулю.

Тождество Эйлера

Начнем с уникально интересной теоремы.

Теорема. Модуль произведения 2-x кватернионов равен произведению модулей сомножителей.

Доказательство.

Сначала докажем, что кватернион, сопряженный с произведением 2-х кватернионов, равен произведению сопряженных кватернионов, взятых в обратном порядке.

Действительно, пусть α = а + u, ß = в + v, где а, в   R, u и v – вектор-кватернионы. Тогда αß = аb + аv + вu + vu = ab – (uv) + av + bu + [u, v].

Далее,  = аb – ub + vu = аb – (u, v) – аv – bu + [v, u] = аb – (u, v) – аv – bu – [u, v] = αß.

Теперь имеем:


 ,


откуда  , что и требовалось доказать.

Рассмотрим теперь тождество  через компоненты кватернионов, положив


α = а1 – b1i – c1j – d1k, ß = а2 – в2i – с2j – d2k так, что

αß=a1a2+b1b2+c1c2-d1d2+(а1b2-в1a2-с1d2+d1c2) i+(а1c2+b1d2-с1a2-d1b2) j+(а1a2-в1c2+с1b2-d1a2) k.

Получим известное тождество Эйлера:

(а12+в12+с12+d12) (а22+в22+с22+d22)=(а1a2+b1b2+с1c2+d1d2)2+(а1b2-b1a2-с1d2+d1c2)2+(а1c2-b1d2-с1a2-d1b2)2+(а1d2-b1c2+с1b2-d1a2)2,


позволяющее выразить произведение двух сумм квадратов в виде суммы 4 квадратов билинейных выражений. Аналогичные тождества имеют место для сумм двух квадратов (это тождество связано с умножением комплексных чисел) и для сумм 8 квадратов. Оказывается, что аналогичных тождеств для сумм n квадратов, кроме перечисленных при n = 2,4,8 и тривиального тождества при n = 1, не существует.

Вращение трехмерного евклидова пространства

Пусть u, v, w – тройка попарно ортогональных векторов единичной длины, ориентированная так же, как тройка i, j, k. Тогда согласно правилу умножения векторов в алгебре кватернионов получим υ2 = v2 = ω2 = -1. Далее, υv = – vυ + [υ, v] = [υ, v] = ω. Здесь воспользуемся тем, что векторное произведение взаимоортогональных единичных векторов равно единичному вектору, ортогональному к ним обоим и направленному в соответствии с ориентацией базисных векторов i, j, k. Аналогично, vυ = -ω; vω = -ωv = υ; ωυ = -υω = ω. Таким образом, правило умножения векторов υ, v, ω является полным аналогом правила умножения векторов i, j, k. Иными словами, отображение 1→1, i→υ, j→v, k→ω задает изоморфизм алгебры кватернионов на себя, то есть, автоморфизм этой алгебры. Линейное преобразование пространства векторов, отражающих тройку i, j, k на тройку υ, v, ω, есть, очевидно, собственно ортогональное преобразование, ибо эти 2 тройки образуют ортогональные, одинаково ориентированные базисы пространства векторов.

Все автоморфизмы получаются указанным способом.

Действительно, пусть υ, v, ω – φ-образы i, j, k при некотором автоморфизме. Тогда υ2 = v2 = ω2 = -1; vυ = -υv = ω; vω = -ωv = υ и ωυ = -υω = v. Из равенства υ2 = 1 заключаем, что кватернион и есть вектор единичной длины. Действительно, пусть υ = а + υ1, где а – скалярная часть υ. Тогда -1 = υ2 = а2 + 2аυ1 -  , откуда 2аυ1= 0. Если допустить, что υ1= 0, то 1 = а2, что невозможно. Поэтому υ ≠ 0, следовательно, а = о,  . По той же причине кватернионы υ и v являются векторами единичной длины. Далее, из того, что скалярная часть кватерниона υv = ω равна 0, заключаем, что векторы υ и v ортогональны. По той же причине ортогональны векторы υ, ω и ω, υ, так что υ, v, ω составляют тройку попарно ортогональных единичных векторов. Ориентация этой тройки совпадает с ориентацией тройки i, j, k, ибо в противном случае было бы υv = ω, а не vυ = ω.

Пусть теперь α – некоторый кватернион единичного модуля. Отображение х→α-1хα есть автоморфизм алгебры кватернионов и, следовательно, он осуществляет некоторое собственное вращение пространства векторов. Пусть α=а+υ0, где а – скалярная часть α. Тогда  , так что можно положить а = соsφ,  = sinφ, 0≤φ≤ . Тогда α = cosφ + υsinφ, где υ – вектор единичной длины (если α = -1, то υ0 = 0 и в качестве υ можно взять любой единичный вектор).

Пусть теперь v – какой-либо вектор единичной длины, ортогональный векторам υ, v, и пусть ω = υv. Выясним, как действует автоморфизм х→α-1хα на векторы υ, v, ω. Ясно, что векторы α и υ коллинеируют, так что α -1υα = υ.

Далее,

α-1= cosφ-υsinφ; α=cosφ+υsinφ;

α-1vα=(cosφ-υsinφ) v (cosφ+υsinφ)=(vcosφ-ωsinφ) (cosφ+υsinφ)=

=vcos2φ-ωsinφcosφ+vυsinφcosφ-ωυ2sinφ=v (cos2φ-sin2φ)-2ωsinφcosφ=vcos2φ-ωsin2φ;

α -1ωα =(ωcosφ+vsinφ) (cosφ+υsinφ)=vsin2φ+vcos2φ.


Итак, автоморфизм х→α-1хα не меняет вектор υ и поворачивает на угол 2φ плоскость, натянутую на вектора v и ω (считаем положительным направление вращения от v к ω), то есть, вращает пространство векторов вокруг оси, проходящей через вектор υ, на угол 2φ. Известно, что всякое собственное вращение трехмерного пространства есть поворот вокруг оси на некоторый угол, так что любое собственное вращение может рассматриваться как трансформация х→α-1хα пространством кватерниона с единичным модулем.

Заметим, что преобразование х→α-1хα при  не дает ничего нового, если положить   и  при любом кватернионе х.

В любой ассоциативной алгебре с единицей обратимый элемент α порождает автоморфизм алгебры х→α-1хα, называемый внутренним автоморфизмом алгебры.

Кватернионы единичного модуля образуют группу относительно умножения. Сопоставление каждому такому кватерниону вращения х→α-1хα трехмерного пространства векторов есть гомоморфное отображение, ибо , то есть, произведению кватернионов отвечает произведение вращения. Ядро этого гомоморфизма состоит только из элементов  .

Действительно, α = а + bi + сj + dk принадлежит ядру, если α-1хα = х, при любом векторе х, т.е., если хα = αх. Положив х = i, получим с = d = 0, а, положив х = j, получим

b = d = 0.

Итак, α = а = 1, ибо . Тем самым получаем, что группа S0 (3) собственных вращений трехмерного пространства изоморфна фактор-группе кватернионов единичного модуля по подгруппе { 1}.

Представление трехмерных вращений при помощи кватернионов очень удобно тем, что кватернион, связанный с вращением, определяет непосредственно его геометрические характеристики – ось вращений и угол поворота. При обычном задании вращения при помощи ортогональной матрицы для определения оси вращения и угла нужно произвести некоторые вычисления. Закон умножения кватернионов тоже проще закона умножения матриц 3 порядка.

Заметим еще, что группа кватернионов с единичным модулем изоморфна группе u(2) унитарных матриц 2-го порядка с определителем равным единице.

Действительно, кватерниону α = а + bi + сj + dk соответствует матрица

,а сопряженная

кватерниону  .

Из равенства   следует, что АА*=Е, т.е. матрица произведений является унитарной.

Далее, detА = а2 + b2 + с2 + d2 = 1, если матрица †= унитарна и detА=1, то равенство А-1=А* дает δ= , γ= – ß, то есть,  (.......)

Loading

Календарь

«  Август 2017  »
ПнВтСрЧтПтСбВс
 123456
78910111213
14151617181920
21222324252627
28293031

Архив записей

Друзья сайта

  • Заказать курсовую работу!
  • Выполнение любых чертежей