Центральный Дом Знаний - Краткий курс высшей алгебры. Дураков Б.К.

Информационный центр "Центральный Дом Знаний"

Заказать учебную работу! Жми!



ЖМИ: ТУТ ТЫСЯЧИ КУРСОВЫХ РАБОТ ДЛЯ ТЕБЯ

      cendomzn@yandex.ru  

Наш опрос

Я учусь (закончил(-а) в
Всего ответов: 2691

Онлайн всего: 1
Гостей: 1
Пользователей: 0


Форма входа

Краткий курс высшей алгебры. Дураков Б.К.

Дураков Б.К.

Краткий курс высшей алгебры.   


М.: ФИЗМАТЛИТ, 2006. - 232 с.

Учебное пособие предназначено студентам инженерно-технических специальностей технических вузов. Здесь изложены следующие разделы курса алгебры: комплексные числа, многочлены от одного неизвестного, матрицы и определители, системы линейных уравнений, линейные пространства, евклидовы пространства.

Книга будет полезна всем студентам технических вузов, изучающим математику, а также преподавателям и аспирантам.

Допущено Министерством образования и науки Российской Федерации в качестве учебного пособия для студентов высших учебных заведений, обучающихся по техническим специальностям.
 

 

 

Формат: djvu / zip 

Размер: 1,5 Мб



ОГЛАВЛЕНИЕ:
Введение 5
Глава 1. Комплексные числа 7
§ 1. Построение системы комплексных чисел 7
§2. Тригонометрическая форма записи комплексных чисел. Сопряженные числа 15
§3. Возведение в степень. Извлечение корней из комплексных чисел. . 22
Глава 2. Многочлены от одного неизвестного 29
§4. Основные определения. Операции над многочленами 29
§5. Делители многочленов. Алгоритм Евклида 35
§6. Корни многочленов 43
§ 7. Неприводимые многочлены 52
§8. Рациональные дроби 57
§9. Вычисление корней многочленов 65
Глава 3. Матрицы и определители 74
§ 10. Матрицы. Операции над матрицами 74
§ 11. Определители. Основные определения и теоремы 80
§ 12. Свойства определителей 85
§ 13. Обратная матрица 91
Глава 4. Системы линейных уравнений 97
§ 14. Общие определения. Квадратные системы 97
§15. Метод последовательного исключения неизвестных 102
§ 16. n-мерное векторное пространство ПО
§ 17. Линейная зависимость векторов 113
§ 18. Ранг матрицы 128
§ 19. Системы линейных уравнений 136
§20. Подпространства n-мерного векторного пространства Ап 139
§21. Системы линейных однородных уравнений 142
Глава 5. Линейные пространства 151
§22. Определение линейного пространства. Изоморфизм 151
§23. Конечномерные пространства. Базы 157
§24. Линейные преобразования линейных пространств 166
§25. Линейные подпространства 175
§ 26. Характеристические корни и собственные векторы 185
Глава 6. Евклидовы пространства 195
§27. Скалярное произведение векторов линейного пространства 195
§28. Ортогональные системы. Ортонормированный базис 198
§ 29. Ортогональные преобразования евклидовых пространств 206
§30. Симметрические преобразования евклидовых пространств 210
§31. Ортогональное дополнение. Ортогональные подпространства 215
§32. Действительные квадратичные формы 218
Список литературы 229

Loading

Календарь

«  Декабрь 2024  »
ПнВтСрЧтПтСбВс
      1
2345678
9101112131415
16171819202122
23242526272829
3031

Архив записей

Друзья сайта

  • Заказать курсовую работу!
  • Выполнение любых чертежей
  • Новый фриланс 24