Центральный Дом Знаний - Урок геометрии по теме "Золотое сечение" для 8 класса (+ презентация)

Информационный центр "Центральный Дом Знаний"

Заказать учебную работу! Жми!



ЖМИ: ТУТ ТЫСЯЧИ КУРСОВЫХ РАБОТ ДЛЯ ТЕБЯ

      cendomzn@yandex.ru  

Наш опрос

Я учусь (закончил(-а) в
Всего ответов: 2690

Онлайн всего: 1
Гостей: 1
Пользователей: 0


Форма входа

Логин:
Пароль:

Урок геометрии по теме "Золотое сечение" для 8 класса (+ презентация)


Тема: «Золотое сечение»
Цели: 
Расширить кругозор учащихся, способствовать развитию познавательного интереса.
Показать школьникам общеинтелектуальное значение математики. Способствовать познанию законов красоты и гармонии окружающего мира.
Оборудование:
Чертежные инструменты.
Гербарии.
Плакат «Золотое сечение».
Интерактивная доска.
Содержание урока:

Окружающий нас мир многообразен...
Вы, наверное, обращали внимание, что мы неодинаково относимся к предметам и явлениям окружающей действительности. Беспорядочность, бесформенность, несоразмерность воспринимаются нами как безобразное и производят отталкивающее впечатление. А предметы и явления, которым свойственна мера, целесообразность и гармония воспринимаются как красивое и вызывают у нас чувство восхищения, радости, поднимают настроение.
Людей с давних времён волновал вопрос, подчиняются ли такие неуловимые вещи как красота и гармония, каким-либо математическим расчётам. Можно ли «проверить алгеброй гармонию?» - как сказал А.С. Пушкин.
Конечно, все законы красоты невозможно вместить в несколько формул, но, изучая математику, мы можем открыть некоторые слагаемые прекрасного.
Сегодня на уроке я познакомлю вас с одним из таких математических соотношений, там, где оно присутствует, ощущается гармония и красота.
Тема сегодняшнего урока «Золотое сечение и гармония форм природы и искусства». Откройте тетради, запишите число ... и тему урока ...

Эпиграфом урока, будут слова немецкого астронома и математика Иоганна Кеплера: «... Геометрия владеет двумя сокровищами - теоремой Пифагора и золотым сечением, и если первое из них можно сравнить с мерой золота, то второе - с драгоценным камнем...».
Теорему Пифагора знают многие люди, а вот что такое «золотое сечение» - далеко не все. Сегодня на уроке я познакомлю вас с этим понятием, научу делить отрезок в золотом отношении, увидим, где оно встречается в природе, как используется в технике и произведениях искусства.
Что же такое золотое сечение?
Рассмотрим отрезок АВ.(.....)
Его можно разделить точкой Е на две части бесконечным множеством способов, но говорят что точка Е производит золотое сечение отрезка АВ, если выполняется пропорция: длина меньшего отрезка так относится к длине большего, как больший отрезок относится к длине всего отрезка, т.е.
 .
Термин золотое сечение ввёл в XVI веке великий художник, учёный и изобретатель Леонардо да Винчи. В истории утвердились три варианта названия: золотое сечение, золотая пропорция и третье - деление отрезка в среднем и крайнем отношениях. Кроме того, золотое сечение награждали эпитетами «божественное», «чудесное», «превосходнейшее», потому что-то, где оно присутствует, вызывает у нас ощущение красоты и гармонии. Об этом поговорим чуть позже.
Чтобы и вы смогли увидеть золотое сечение в природе, в произведениях искусства, я научу вас сейчас делить отрезок в среднем и крайнем отношениях, т.е. делить отрезок в золотом отношении.

                                                        Дано: отрезок АВ.
                                                                Построить: золотое сечение отрезка                                АВ, т.е. точку Е так, чтобы  .


Построение.
Построим прямоугольный треугольник, у которого один катет в два раза больше другого. Для этого восстановим в точке В перпендикуляр к прямой АВ и на нем отложим отрезок ВС= .
Далее, соединим точки А и С, отложим отрезок CD=CB, и наконец AE=AD.
Точка Е является искомой, она производит золотое сечение отрезка АВ.
Доказательство.
ΔАВС – прямоугольный по построению. 
По теореме Пифагора АС2=АВ2+ВС2.
Так как отрезок АС=AD+DC, то равенство перепишем в виде: (AD+DC)2=АВ2+ВС2(.....)
А сейчас проведём психологический опыт.
Начертите на альбомном листе произвольный прямоугольник.
Найдите отношение ширины прямоугольника к его длине. (Учитель проходит между рядами.)
Чему равно получившееся отношение?
Результаты показали, что у большинства из вас отношение сторон оказалось близким к числу φ. И это не случайно, так как многим людям кажутся красивыми и гармоничными именно те фигуры, в которых есть элементы, связанные друг с другом золотым отношением.
Прямоугольник, стороны которого находятся в золотом отношении, т.е. отношение ширины к длине даёт число φ, называется золотым прямоугольником.
Давайте начертим такой прямоугольник в тетради. Для этого мы не будем новый отрезок делить в золотом отношении, а воспользуемся результатом задачи на построение. Ширину прямоугольника возьмём равную отрезку ВС, а длину - АС. Прямые углы начертим с помощью чертёжного треугольника.(.....)
Сообщение
В биологических исследованиях было показано, что, начиная с вирусов и растений и кончая организмом человека, всюду выявляется золотая пропорция, характеризующая соразмерность и гармоничность их строения. Золотое сечение признано универсальным законом живых систем. 
Было установлено, что числовой ряд чисел Фибоначчи характеризует структурную организацию многих живых систем. Например, винтовое листорасположение на ветке составляет дробь (число оборотов на стебле/число листьев в цикле, напр. 2/5; 3/8; 5/13), соответствующую рядам Фибоначчи. 
Хорошо известна "золотая" пропорция пятилепестковых цветков яблони, груши и многих других растений. Носители генетического кода - молекулы ДНК и РНК - имеют структуру двойной спирали; ее размеры почти полностью соответствуют числам ряда Фибоначчи. 
Гете подчеркивал тенденцию природы к спиральности.(......)
Цветки и семена подсолнуха, ромашки, чешуйки в плодах ананаса, хвойных шишках "упакованы" по логарифмическим ("золотым") спиралям, завивающимся навстречу друг другу, причем числа "правых "и "левых" спиралей всегда относятся друг к другу, как соседние числа Фибоначчи. 
Рассмотрим побег цикория. От основного стебля образовался отросток. Тут же расположился первый листок. Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс.(.....)
Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий – 38, четвертый – 24 и т.д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.
У многих бабочек соотношение размеров грудной и брюшной части тела отвечает золотой пропорции. Сложив крылья, ночная бабочка образует правильный равносторонний треугольник. Но стоит развести крылья, и вы увидите тот же принцип членения тела на 2,3,5,8. Стрекоза также создана по законам золотой пропорции: отношение длин хвоста и корпуса равно отношению общей длины к длине хвоста.(.....)
В 1855 г. немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд «Эстетические исследования». 
Цейзинг измерил около двух тысяч человеческих тел и пришел к выводу, что золотое сечение выражает средний статистический закон.(......)
Пропорции золотого сечения проявляются и в отношении других частей тела – длина плеча, предплечья и кисти, кисти и пальцев и т.д. 
Справедливость своей теории Цейзинг проверял на греческих статуях. Наиболее подробно он разработал пропорции Аполлона Бельведерского. Подверглись исследованию греческие вазы, архитектурные сооружения различных эпох, растения, животные, птичьи яйца, музыкальные тона, стихотворные размеры. 
Цейзинг дал определение золотому сечению, показал, как оно выражается в отрезках прямой и в цифрах. Когда цифры, выражающие длины отрезков, были получены, Цейзинг увидел, что они составляют ряд Фибоначчи.
Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. 
Так, 21 : 34 = 0,617, а 34 : 55 = 0,618. (или 1.618, если делить большее число на меньшее).
Ряд Фибоначчи мог бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого деления в растительном и в животном мире, не говоря уже об искусстве, неизменно приходили к этому ряду как арифметическому выражению закона золотого сечения.
Итак, сегодня на уроке мы познакомились с несколькими новыми понятиями.
С какими?
Когда говорят, что некоторая точка произвела золотое сечение отрезка?
Дайте определение золотого треугольника.
Какой прямоугольник называется золотым?
Я, думаю, что вы запомнили, где используется золотое сечение, и как результат, сможете увидеть золотую пропорцию в окружающих нас предметах.
Домашнее задание
Задача 1.   Начни с золотого прямоугольника. Отрежь от него квадрат – и ты получишь маленький, но по прежнему золотой прямоугольник.(.....)
Loading

Календарь

«  Апрель 2024  »
ПнВтСрЧтПтСбВс
1234567
891011121314
15161718192021
22232425262728
2930

Архив записей

Друзья сайта

  • Заказать курсовую работу!
  • Выполнение любых чертежей
  • Новый фриланс 24