Центральный Дом Знаний - Справочное пособие по высшей математике ( Антидемидович ). ( В 5-ти томах ) Боярчук А.К. и др.

Информационный центр "Центральный Дом Знаний"

Заказать учебную работу! Жми!



ЖМИ: ТУТ ТЫСЯЧИ КУРСОВЫХ РАБОТ ДЛЯ ТЕБЯ

      cendomzn@yandex.ru  

Наш опрос

Я учусь (закончил(-а) в
Всего ответов: 2583



Справочное пособие по высшей математике ( Антидемидович ). ( В 5-ти томах ) Боярчук А.К. и др.

Справочное пособие по высшей математике ( Антидемидович ). ( В 5-ти томах ) Боярчук А.К. и др.

Том 1. Математический анализ: введение в анализ, производная, интеграл.

Том 2. Математический анализ: ряды, функции векторного аргумента.

Том 3. Математический анализ: кратные и криволинейные интегралы.

Том 4. Функции комплексного переменного. Теория и практика.

Том 5. Дифференциальные уравнения в примерах и задачах.

    

М.: Едиториал УРСС. т.1 - 2001, 360с.; т.2 - 2003, 224с.; т.3 - 2001, 224с.; т.4 - 2001, 352с.; т.5 - 2001, 384с.  

«Справочное пособие по высшей математике» выходит в пяти томах и представляет собой новое, исправленное и существенно дополненное издание «Справочного пособия по математическому анализу» тех же авторов. В новом издании пособие охватывает три крупных раздела курса высшей математики — математический анализ, теорию дифференциальных уравнений, теорию функций комплексной переменной.

Пособие предназначено для студентов, преподавателей и работников физико-математических, экономических и инженерно-технических специальностей, специалистов по прикладной математике, а также лиц, самостоятельно изучающих высшую математику.

От издательства
"Справочное пособие по высшей математике", первый том которого Вы держите в руках, не является книгой, совершенно незнакомой российскому читателю. Первые три тома представляют собой исправленное и дополненное переиздание двухтомного "Справочного пособия по математическому анализу" тех же авторов, хорошо известного среди студентов под обиходным названием "Анти-Демидович" и ставшего редкостью в вузовских библиотеках. Четвертый и пятый тома издаются впервые и посвящены соответственно теории функций комплексной переменной и теории дифференциальных уравнений.
Пособие построено на материале широко известных задачников — "Сборника задач по математическому анализу" под редакцией Б.П.Демидовича, "Сборника задач по теории функций комплексной переменной" Л.И.Волковысского с соавторами, "Сборника задач по дифференциальным уравнениям" А.Ф.Филиппова и ряда других. Все пять томов объединены общей идеологией "решебника": в каждой главе содержится необходимый теоретический материал, изложены и проиллюстрированы многочисленными примерами методы решения основных типов задач, приведены упражнения для самостоятельной работы, ответы на которые помещены в конце книги.
В первом томе рассматриваются следующие разделы курса математического анализа: введение в анализ (с элементами теории множеств, теорией действительных и комплексных чисел, теорией векторных и метрических пространств, теорией пределов) — первая глава; дифференциальное исчисление функций одной переменной — вторая глава (по сравнению с предыдущим изданием сюда добавлены два параграфа, касающиеся построения графиков функций и задач на минимум и максимум функции); неопределенный интеграл — третья глава; определенный интеграл (включая интеграл Стилтьеса, приложения определенного интеграла к решению задач геометрии, механики и физики, методы приближенного вычисления определенных интегралов) — четвертая глава. В процессе подготовки нового издания были исправлены замеченные опечатки и приложены значительные усилия к тому, чтобы не внести новых.
В заключение мы благодарим Вас, дорогой читатель, за оказанное нам доверие и надеемся, что эта книга станет для Вас хорошим помощником.
 

 

Том 1. Математический анализ: введение в анализ, производная, интеграл.

Оглавление
Глава 1. Введение в анализ 5
§1 . Элементы теории множеств 5
§2. Функция. Отображение 13
§3. Действительные числа 20
§4. Комплексные числа 31
§5. Векторные и метрические пространства 35
§6. Предел последовательности 42
§7. Предел функции 66
§8. Непрерывность функций 97
§9. Равномерная непрерывность функций 106
Глава 2. Дифференциальное исчисление функций одной переменной 111
§ 1. Производная явной функции 111
§2. Дифференциал функции 127
§3. Производная обратной функции. Производная функции, заданной параметрически. Производная функции, заданной в неявном виде 133
§4. Производные и дифференциалы высших порядков 137
§5. Теоремы Ролля, Лагранжа, Коши 147
§6. Возрастание и убывание функции. Неравенства 156
§7. Направление выпуклости графика функции. Точки перегиба 161
§8. Раскрытие неопределенностей 166
§9. Формула Тейлора 173
§10. Экстремум функции. Наибольшее и наименьшее значения функции 182
§11. Построение графиков функций по характерным точкам 187
§12. Задачи на максимум и минимум функции 200
Глава 3. Неопределенный интеграл 206
§1. Простейшие неопределенные интегралы 205
§2. Интегрирование рациональных функций 221
§3. Интегрирование иррациональных функций 233
§4. Интегрирование тригонометрических функций 241
§5. Интегрирование различных трансцендентных функций 246
§6. Разные примеры на интегрирование функций 248
§7. Интегрирование вектор-функций и функциональных матриц 251
Глава 4. Определенный интеграл 253
§1. Интеграл Римана 253
§2. Основные теоремы и формулы интегрального исчисления 263
§3. Интегрирование вектор-функций, комплекснозначных функций и функциональных матриц 291
§4. Несобственные интегралы 297
§5. Функции ограниченной вариации 311
§6. Приложение определенного интеграла к решению задач геометрии 314
§7. Общая схема применения определенного интеграла. Задачи из механики и физики 332
§8. Интеграл Стилтьеса 336
§9. Приближенное вычисление определенных интегралов 345
Ответы 353
 

 

Том 2. Математический анализ: ряды, функции векторного аргумента.

Оглавление
Глава 1. Ряды 3
§ 1. Числовые ряды. Признаки сходимости знакопостоянных рядов 3
§ 2. Признаки сходимости знакопеременных рядов 25
§ 3. Действия над рядами 3 8
§ 4. Функциональные последовательности и ряды. Свойства равномерно сходящихся функциональных последовательностей и рядов
§ 5. Степенные ряды 58
§ 6. Ряды Фурье 79
§ 7. Суммирование рядов. Вычисление определенных интегралов с помощью рядов 96
Глава 2. Дифференциальное исчисление функций векторного аргумента 113
§ 1. Предел функции. Непрерывность 113
§ 2. Частные производные и дифференциалы функции векторного аргумента. 124
§ 3. Неявные функции 147
§ 4. Замена переменных 167
§ 5. Формула Тейлора 186
§ 6. Экстремум функции векторного аргумента 196

Ответы   220
 

 

Том 3. Математический анализ: кратные и криволинейные интегралы.

Оглавление
Глава 1. Интегралы, зависящие от параметра 3
§1. Собственные интегралы, зависящие от параметра 3
§2. Несобственные интегралы, зависящие от параметра. Равномерная сходимость интегралов 15
§3. Дифференцирование и интегрирование несобственных интегралов под знаком интеграла 34
§4. Эйлеровы интегралы 51
§5. Интегральная формула Фурье 60
Глава 2. Кратные и криволинейные интегралы 68
§1. Интеграл Римана на компакте. Приведение кратных интегралов к повторным и их вычисление 68
§2. Несобственные кратные интегралы 99
§3. Приложение кратных интегралов к решению задач геометрии и физики 112
§4. Интегрирование на многообразиях 148
§5. Формулы Остроградского, Грина и Стокса 184
§6. Элементы векторного анализа 201
§7. Запись основных дифференциальных операций векторного анализа в ортогональных криволинейных координатах 214
Ответы 222
 

 

Том 4. Функции комплексного переменного. Теория и практика.

Оглавление

Предисловие 3

Глава 1. Основные структуры математического анализа 4

§ 1. Элементы теории множеств и отображений 4
Некоторые логические символы (4) Обозначения, используемые в теории множеств (5) Натуральные числа. Метод математической индукции (5) Простейшие операции над множествами (6) Упорядоченная пара и декартово произведение множеств (7) Бинарные отношения. Проекции и сечения бинарного отношения. Обратное бинарное отношение (7) Функциональное бинарное отношение. Функция и простейшие понятия, связанные с нею (8) Обратная функция. Композиция отображений (9) Параметрическое и неявное отображения (9) Изоморфизм (10)

§ 2. Математические структуры 10
Группа (10) Кольцо (10) Тело (10) Поле (11) Векторное пространство над полем К. Нормированное пространство (11)

§ 3. Метрические пространства 12
Аксиомы метрики. Предел последовательности точек метрического пространства (12) Шары, сферы, диаметр множества (13) Открытые множества (14) Внутренность множества (15) Замкнутые множества, точки прикосновения, замыкание множества (16)

§ 4. Компактные множества 18

§ 5. Связные пространства и связные множества 70

§ 6. Предел и непрерывность отображения из одного метрического пространства в другое Предел и непрерывность отображения (20) Непрерывность композиции отображений (21) Непрерывность обратного отображения (22) Предел и непрерывность отображения в смысле Коши. Некоторые свойства непрерывных отображений (22) Равномерно непрерывные
отображения (24) Гомеоморфизмы. Эквивалентные расстояния (25)

Глава 2. Комплексные числа и функции комплексного переменного 26

§ 1. Комплексные числа и комплексная плоскость 76
Определение комплексного числа (26) Аргумент комплексного числа. Тригонометрическая и показательная формы его записи. Умножение и деление комплексных чисел. Операция извлечения корня из комплексного числа (28) Стереографическая проекция и ее свойства (29) Примеры (31)

§ 2. Топология комплексной плоскости. Последовательности комплексных 43 чисел. Свойства функций, непрерывных на компакте Топология комплексной плоскости (43) Замкнутые множества, отрезок и ломаная. Связные множества (45) Последовательность комплексных чисел и ее предел (45) Свойства компакта КсС (47) Предел и непрерывность функции комплексного переменного (48) Арифметические операции над пределами и непрерывными функциями (49) Предел и непрерывность композиции функций (49) Свойства функций, непрерывных на компакте (50)

§ 3. Непрерывные и гладкие кривые. Односвязные и многосвязные области 50 Примеры (53)

§ 4. Дифференцируемые функции комплексного переменного. Связь между 63 С-дифференцируемостью и R2 -дифференцируемостью. Аналитические функции Определение дифференцируемой функции. Правила дифференцирования (63) Дифференциал функции (66) Критерий дифференцируемое функции комплексного переменного (67) Аналитические функции (68) Геометрический смысл производной функции комплексного переменного. Понятие конформного отображения (70) Плоские физические поля и их связь с аналитическими функциями (71) Неравенство Лагранжа (73) Примеры (73)
Упражнения для самостоятельной работы 79

Глава 3. Элементарные функции в комплексной плоскости 83

§ 1. Дробно-линейные функции и их свойства 83 Определение дробно-линейной функции. Конформность отображения (83) Геометрические свойства дробно-линейных отображений (84) Дробно-линейные изоморфизмы и автоморфизмы (86) Примеры (88)

§ 2. Степенная функция w = z" (n e N, п > 2). Многозначная функция w — yz 41 и ее поверхность Римана Степенная функция (91) Многозначная функция w — yz и ее поверхность Римана (92) Примеры (93)

§ 3. Показательная функция w = ez и многозначная функция z=Ln w 94 Показательная функция w = ez (94) Многозначная функция z=Ln w (96) Примеры (96)§ 4. Общая степенная и общая показательная функции 97 Общая степенная функция (97) Общая показательная функция (98)

§ 5. Функция Жуковского 99 Определение функции Жуковского. Конформность (99) Примеры (100)

§ 6. Тригонометрические и гиперболические функции 101 Примеры (105)
Упражнения для самостоятельной работы 145

Глава 4. Интегрирование в комплексной плоскости. Интегралы Ньютона — Лейбница и Коши  149

§ 1. Интеграл Ньютона — Лейбница 149 Первообразная (149) Интеграл Ньютона — Лейбница (150) Линейность интеграла. Замена переменных и формула интегрирования по частям (757)

§ 2. Производные и интегралы Ньютона — Лейбница любых порядков 153 Определение и-производной и и-интеграла (153) Формула Ньютона — Лейбница. Производные по пределам интегрирования (154) Формула Тейлора(156)

§ 3. Производная Ферма — Лагранжа. Формула Тейлора — Пеано 156 Производная Ферма — Лагранжа (156) Теорема Тейлора — Пеано и ее обращение (157)

§ 4. Криволинейные интегралы 159 Интегрирование функций по ориентированной гладкой кривой (759) Гомотопия двух кривых (путей) (161)

§ 5. Теорема и интеграл Коши 162 Существование локальной первообразной аналитической функции (162) Первообразная вдоль кривой (вдоль пути) (165) Теорема Коши
(166) Интегральная формула Коши (172) Примеры (173)

§ 6. Интеграл типа Коши 175 Определение и основное свойство интеграла типа Коши (775) Гармоничность действительной и мнимой частей аналитической функции. Восстановление аналитической функции по ее действительной (мнимой) части (177) Теоремы Лиувилля и Морера (178) Главное значение и предельные значения интеграла типа Коши (179) Формулы Шварца и Пуассона (181) Примеры (184)
Упражнения для самостоятельной работы 195

Глава 5. Ряды аналитических функции. Изолированные особые точки 197

§ 1. Ряд Тейлора 197 Общие сведения о рядах (197) Последовательность функций и функциональный ряд. Поточечная сходимость (198) Равномерная норма функции. Равномерная сходимость последовательности функций и функционального ряда (199) Нормальная сходимость функционального ряда. Признаки Вейерштрасса, Абеля и Дирихле равномерной сходимости функциональных рядов (201) Функциональные свойства равномерной суммы функционального ряда (203) Степенные ряды (206) Теорема Тейлора (208) Теорема
единственности (210) Примеры (212)

§ 2. Ряд Лорана и изолированные особые точки аналитических функций 219 Теорема Лорана (219) Классификация изолированных особых точек в С (227) Поведение аналитической функции при подходе к изолированной особой точке (222) Бесконечная изолированная особая точка (224) Примеры (225)
Упражнения для самостоятельной работы 229

Глава 6. Аналитическое продолжение 231

§ 1. Основные понятия. Аналитическое продолжение вдоль пути 232 Свойство единственности аналитической функции. Определение аналитического продолжения (232) Аналитическое продолжение вдоль пути (234) Инвариантность аналитического продолжения вдоль пути относительно гомотопных деформаций этого пути (235)

§ 2. Полные аналитические функции 237 Понятие полной аналитической функции (237) Примеры полных аналитических функций (238) Особые точки полной аналитической функции (239) Существование особой точки на границе круга сходимости степенного ряда (240)

§ 3. Принципы аналитического продолжения 240 Примеры (241)
Упражнения для самостоятельной работы 243

Глава 7. Вычеты и их применения 245

§ 1. Определение вычета. Основная теорема 245 Вычет относительно изолированной конечной точки (245) Вычет относительно бесконечности (246) Теорема о вычетах (247) Примеры
(248)

§ 2. Целые и мероморфные функции 257 Целые функции (257) Мероморфные функции. Теорема Миттаг-Леффлера (257) Разложение мероморфных функций на простейшие
дроби (259) Примеры (262)

§ 3. Бесконечные произведения 264 Числовые бесконечные произведения (265) Равномерно сходящиеся бесконечные произведения (267) Представление целой функции в виде бесконечного произведения (267) Разложение sinz в бесконечное произведение (26Р) Род и порядок целой функции (270) Мероморфная функция как отношение двух целых функций (270) Примеры (271)

§ 4. Применение вычетов для вычисления интегралов и сумм рядов 274 Применение вычетов для вычисления определенных интегралов (274) Применение вычетов к вычислению сумм рядов (278) Примеры (279)
Упражнения для самостоятельной работы 291

Глава 8. Некоторые общие вопросы геометрической теории аналитических функций  295

§ 1. Принцип аргумента. Теорема Руше 295 Вычисление интеграла Г dz (295) Теорема о 2га'е"Ь/0)~Л логарифмическом вычете (296) Принцип аргумента (296) Теорема
Руше (297) Примеры (298)

§ 2. Сохранение области и локальное обращение аналитической функции 300 Принцип сохранения области (300) Локальное обращение аналитических функций (301) Примеры (303)

§ 3. Экстремальные свойства модуля аналитической функции 304 Принцип максимума модуля аналитической функции (304) Лемма Шварца (305) Примеры (305)

§ 4. Принцип компактности. Функционалы на семействе аналитических функций Равномерно ограниченные и равностепенно непрерывные семейства функций (308) Принцип компактности (309) Функционалы, определенные на множествах функций (310) Теорема Гурвица (311)

§ 5. Существование и единственность конформного отображения 312 Конформные изоморфизмы и автоморфизмы (312) Примеры автоморфизмов (312) Существование и единственность изоморфизмов областей, изоморфных единичному кругу (313) Теорема существования (314)

§ 6. Соответствие границ и принцип симметрии при конформном отображении Теорема о соответствии границ (315) Принцип симметрии (316) Примеры (317)

§ 7. Конформное отображение многоугольников. Интеграл Кристоффеля — Шварца Отображение верхней полуплоскости на многоугольник (318) Случай многоугольника, имеющего вершины в бесконечности (322) Отображение верхней полуплоскости на внешность многоугольника (322) Отображение верхней полуплоскости на прямоугольник (323) Эллиптический синус и его двоякая периодичность (324) Отображение единичного круга на многоугольник (326) Примеры (328)
Упражнения для самостоятельной работы 332

Ответы 334

Литература 338

Предметный указатель 339
 

 

Том 5. Дифференциальные уравнения в примерах и задачах.

Оглавление

Предисловие 3

Введение 4

Основные понятия. Составление дифференциальных уравнений 4 Основные определения (4) Задача Коши (4) Построение дифференциального уравнения по заданному семейству кривых (5) Примеры (5)
Упражнения для самостоятельной работы 10

Глава 1. Дифференциальные уравнения первого порядка 11

§ 1. Уравнения с разделяющимися переменными 11 Дифференциальное уравнение с разделяющимися переменными (11) Разделение переменных линейной заменой аргумента (11) Примеры (11)

§2. Геометрические и физические задачи, приводящие к уравнениям с разделяющимися переменными Использование геометрического смысла производной (15) Использование физического смысла производной (15) Примеры (15)

§ 3. Однородные уравнения и уравнения, приводящиеся к ним 29 Однородное уравнение (29) Уравнение, сводимое к однородному (30) Обобщенно-однородное уравнение (30) Примеры (30)

§ 4. Линейные уравнения и уравнения, приводящиеся к ним 39 Линейное уравнение первого порядка (39) Обмен ролями между функцией и аргументом (39) Уравнения, приводимые к линейным (39) Уравнение Миндинга — Дарбу (40) Примеры (40)

§ 5. Уравнения в полных дифференциалах. Интегрирующий множитель 53 Уравнение в полных дифференциалах (53) Интегрирующий множитель (53) Дифференциальное уравнение для интегрирующего множителя (54) Примеры (54)

§ 6. Уравнение Эйлера — Риккати 67 Уравнение Эйлера — Риккати. Специальное уравнение Риккати (67) Каноническое уравнение Эйлера — Риккати (67) Примеры (67)

§ 7. Уравнения, не разрешенные относительно производной 73 Уравнение, не разрешенное относительно производной (73) Общий интеграл уравнения F(y')=0 (73) Представление решения в параметрической форме. Разрешение неполных уравнений (73) Примеры (74)

§ 8. Существование и единственность решения 82 Теоремы Пикара, Пеано и Осгуда (82) Существование и единственность решения задачи Коши для уравнения, не разрешенного относительно производной (82) Продолжение решения задачи Коши (82) Существование и единственность решения векторной задачи Коши (83) Примеры (83)

§ 9. Особые решения 99 Особое решение. Дискриминантная кривая (99) Огибающая как особое решение (100) Примеры (100)

§10. Задачи на траектории 106 Изогональные и ортогональные траектории (106) Эволюта и эвольвента (106) Примеры (107)
Упражнения для самостоятельной работы 112

Глава 2. Дифференциальные уравнения высших порядков 114

§ 1. Виды интегрируемых нелинейных уравнений 114 Дифференциальное уравнение вида F(x,y(n)) = 0 (114) Дифференциальное уравнение вида F(yi"~1\yi")) = 0 (114) Дифференциальное уравнение вида F(yin~2\yin)) = 0 (114) Примеры (115)

§ 2. Уравнения, допускающие понижение порядка 122 Дифференциальное уравнение вида F(x,yik\yik+1\...,yin)) = 0 (122) Дифференциальное уравнение вида F(y,y\...,yin)) = 0 (122) Однородное дифференциальное уравнение вида F(x,y,y\...,yin}) = 0 (122) Обобщенное однородное дифференциальное уравнение вида F(x,y,y,...,yin)) = 0 (122) Уравнение, приводимое к виду (ф,у,У,...,у(п-1))У= 0 (123) Примеры (123)

§ 3. Линейные дифференциальные уравнения с постоянными коэффициентами Линейное дифференциальное уравнение п -го порядка с постоянными коэффициентами. Характеристическое уравнение. Общее решение (135) Поиск частного решения линейного уравнения n-го порядка с постоянными коэффициентами методом неопределенных коэффициентов (136) Метод вариации произвольных постоянных (136) Метод Коши нахождения частного решения неоднородного линейного дифференциального уравнения n-го порядка с постоянными коэффициентами (137) Примеры (137)

§ 4. Линейные дифференциальные уравнения с переменными коэффициентами Линейное дифференциальное уравнение n-го порядка с переменными коэффициентами. Линейно зависимые функции. Определитель Вронского (150) Критерий линейной независимости функций (151) Фундаментальная система решений (151) Формула Остроградского — Лиувилля (151) Общее решение неоднородного линейного дифференциального уравнения с переменными коэффициентами (151) Уравнение Эйлера. Уравнение Чебышева (152)
Дифференциальные уравнения второго порядка (152) Связь между линейным дифференциальным уравнением второго порядка и уравнением Эйлера — Риккати (152) Сведение линейного дифференциального уравнения второго порядка с переменными коэффициентами к уравнению с постоянными коэффициентами (153) Об асимптотическом поведении решений дифференциальных уравнений второго порядка (153) Примеры (153)

§ 5. Краевые задачи 169 Определение краевой задачи (169) Функция Грина краевой задачи (170) Задача Штурма — Лиувилля (170) Условие эквивалентности краевой задачи интегральному уравнению (170) Примеры (170)
Упражнения для самостоятельной работы 180

Глава 3. Системы дифференциальных уравнений 182

§ 1. Линейные системы 182 Неоднородная система линейных дифференциальных уравнений с переменными коэффициентами. Фундаментальная матрица уравнения. Определитель Вронского (182) Метод вариации произвольного вектора (183) Матрицант (183) Неоднородные линейные системы с постоянными коэффициентами. Метод Эйлера (184) Примеры (184)

§ 2. Нелинейные системы 200 Нормальные системы дифференциальных уравнений. Метод исключения (200) Подбор интегрируемых комбинаций (201) Примеры (201)
Упражнения для самостоятельной работы 211

Глава 4. Уравнения в частных производных первого порядка 212

§ 1. Линейные и квазилинейные уравнения 212 Основные понятия (212) Решение квазилинейного уравнения в частных производных первого порядка (212) Задача Коши (272) Уравнение Пфаффа (213) Примеры (213)

§ 2. Нелинейные уравнения первого порядка 228 Нелинейные уравнения в частных производных первого порядка (228) Решение задачи о нахождении интегральной поверхности, проходящей через заданную кривую (228) Метод Коши (229) Обобщение метода Коши (229) Примеры (229)
Упражнения для самостоятельной работы 239

Глава 5. Приближенные методы решения дифференциальных уравнений  240

§ 1. Зависимость решения от начальных условий и параметров 240 Об оценке погрешности приближенного решения (240) Об отыскании производных от решений по параметру (240) Примеры (241)

§2. Аналитические приближенные методы 246 Метод степенных рядов (246) Метод малого параметра (247) Примеры (247)

§ 3. Численные методы решения дифференциальных уравнений 266 Метод Эйлера к-то порядка (266) Метод Рунге — Кутта 4-го порядка (267) Метод Штермера (267) Примеры (267)
Упражнения для самостоятельной работы 273

Глава 6. Устойчивость и фазовые траектории 274

Loading

Календарь

«  Октябрь 2017  »
ПнВтСрЧтПтСбВс
      1
2345678
9101112131415
16171819202122
23242526272829
3031

Архив записей

Друзья сайта

  • Заказать курсовую работу!
  • Выполнение любых чертежей