Задачи с параметрами
Ефимов Е.А., Коломиец Л.В.
Учебное пособие для факультета довузовской подготовки СГАУ
(Самарский гос. аэрокосмический университет).
Самара, 2006. - 64с.
Учебное пособие предназначено для занятий со слушателями подготовительных курсов факультета довузовской подготовки СГАУ и самостоятельной работы абитуриентов.
В учебное пособие включены все основные типы задач с параметрами, предлагаемых на вступительных экзаменах по математике в СГАУ, на централизованном тестировании и Едином государственном экзамене. Ко всем задачам приведены решения или ответы.
Формат: pdf / zip
Размер: 340 Кб
Содержание:
1. Квадратный трехчлен - 5
2. Абсолютная величина - 17
3. Рациональные уравнения и системы - 26
4. Иррациональные уравнения и неравенства - 36
5. Показательные и логарифмические уравнения и неравенства - 46
6. Тригонометрические уравнения и неравенства - 58
ВВЕДЕНИЕ
Практика вступительных экзаменов по математике в вузы показывает, что задачи с параметрами представляют для абитуриентов наибольшую сложность. Основная цель пособия повысить математическую подготовку абитуриентов в рамках школьного курса математики.
Спецификой задач с параметрами является то, что наряду с неизвестными величинами в них фигурируют параметры, численные значения которых не указаны конкретно, но считаются известными и заданными на некотором числовом множестве. При этом значения параметров существенно влияют на логический и технический ход решения задачи и форму ответа. Ответ в задачах с параметрами, как правило, имеет развернутый вид: при конкретных значениях параметра ответы могут значительно различаться.
В пособии рассмотрены основные методы и идеи решения задач с параметрами. Разбираемые и предлагаемые для самостоятельного решения задачи подобраны в соответствии с действующими программами вступительных экзаменов по математике. В основном это задачи, предлагавшиеся на конкурсных экзаменах в СГАУ за последние 10 лет, на централизованном тестировании (ЦТ) и Едином государственном экзамене (ЕГЭ).
Пособие охватывает важнейшие темы школьного курса математики: квадратный трехчлен, функции, графики, рациональные и иррациональные уравнения и неравенства, системы уравнений, логарифмические, показательные и тригонометрические уравнения и неравенства. В ряде случаев опущены промежуточные этапы решения, которые абитуриент может восстановить самостоятельно. К задачам для самостоятельного решения приведены ответы.
Значения параметров и искомых величин считаются действительными (вещественными). Кратные корни многочленов считаются одним решением, если речь идет о числе корней (решений). Значения параметров, при которых задача не имеет смысла, включены в число тех значений, при которых задача не имеет решений.
Методические пособие предназначено для изучения методов решения задач с параметрами на подготовительных курсах СГАУ, а также будет полезно учащимся старших классов, самостоятельно готовящихся к конкурсным экзаменам по математике.