Центральный Дом Знаний - Классификация основных видов памяти ПК

Информационный центр "Центральный Дом Знаний"

Заказать учебную работу! Жми!



ЖМИ: ТУТ ТЫСЯЧИ КУРСОВЫХ РАБОТ ДЛЯ ТЕБЯ

      cendomzn@yandex.ru  

Наш опрос

Я учусь (закончил(-а) в
Всего ответов: 2573



Классификация основных видов памяти ПК

Оглавление
Введение 4
Теоретическая часть 6
1.1 Энергозависимая и энергонезависимая память 6
1.2. SRAM и DRAM. 7
1.2.1. Триггеры. 7
1.2.2. Элементная база логики. 8
1.3. Динамическое ОЗУ. 9
1.3.1. Устаревшие модификации. 9
1.3.2. SIMM-модули. 11
1.3.3.DIMM 13
3.3.5. Память от Rambus (RDRAM, RIMM). 15
1.4. Оперативная кэш-память. 16
1.5. Постоянное запоминающее устройство. 21
1.6. Флэш-память. 22
1.7. CMOS-память. 22
Практическая часть 22
1. Общая характеристика задачи 22
2. Описание алгоритма решения задачи 24
Заключение: 29
Список использованной литературы 30
Введение
Оперативная память является одним из важнейших элементов компьютера. Именно из нее процессор берет программы и исходные данные для обработки, в нее он записывает полученные результаты. Название  «оперативная» эта память получила потому, что она работает очень быстро, так что процессору практически не приходится ждать при чтении данных из памяти или записи в память. 
Оперативная память  - это энергозависимая среда, в которую загружаются и в которой находятся прикладные программы и данные в момент, пока с ними работают. Когда работа закончена, информация удаляется из оперативной памяти. Если необходимо обновление соответствующих дисковых данных, они перезаписываются. Это может происходить автоматически, но часто требует команды от пользователя. При выключении компьютера вся информация из оперативной памяти теряется.
В связи с этим трудно недооценить все значение оперативной памяти. Однако до недавнего времени эта область компьютерной индустрии практически не развивалась (по сравнению с другими направлениями). Взять хотя бы видео-, аудиоподсистемы, производительность процессоров и. т. д. Усовершенствования были, но они не соответствовали темпам развития других компонентов и касались лишь таких параметров, как время выборки, был добавлен кэш непосредственно на модуль памяти, конвейерное исполнение запроса, изменен управляющий сигнал вывода данных, но технология производства оставалась прежней, исчерпавшей свой ресурс. Память становилась узким местом компьютера, а, как известно, быстродействие всей системы определяется быстродействием самого медленного ее элемента. И вот несколько лет назад волна технологического бума докатилась и до оперативной памяти. Быстрое усовершенствование оперативной памяти позволило кроме ее усовершенствования, значительно снизить цену на нее.
Хотя память значительно подешевела, модернизировать приходится ее намного чаще, чем несколько лет назад. В настоящее время новые типы памяти разрабатываются намного быстрее, и вероятность того, что в новые компьютеры нельзя будет устанавливать память нового типа, как никогда велика.
От количества установленной в компьютере оперативной памяти напрямую зависит возможность, какими программами вы сможете на нем работать. При недостаточном количестве оперативной памяти многие программы либо вовсе не будут работать, либо станут работать крайне медленно.
Часто для оперативной памяти используют обозначение RAM (Random Access Memory), то есть память с произвольным доступом. Это означает, что обращение к данным, хранящимся в оперативной памяти, не зависит от порядка их расположения в памяти. Когда говорят о памяти компьютера, обычно подразумевают оперативную память, прежде всего микросхемы памяти или модули, в которых хранятся активные программы и данные, используемые процессором.
Полупроводниковая оперативная память в настоящее время делится на статическое ОЗУ (SRAM) и динамическое ОЗУ (DRAM). 
Подробно классификация основных видов памяти ПК рассматривается в теоретической части работы.
Практическая часть включает в себя решение задачи по страховой деятельности компании страховщик на территории России. В ходе решения задачи все графики и таблицы были построены с использованием приложения Microsoft Excel.
Теоретическая часть
1.1 Энергозависимая и энергонезависимая память
ЭВМ первого поколения по элементной базе были крайне ненадежными. Так, среднее врем работы до отказа для ЭВМ "ENIAC” составляла 30 минут. Скорость счета при этом была не сравнима со скоростью счета современных компьютеров. Поэтому требования к сохранению данных в памяти компьютера при отказе ЭВМ были строже, чем требования к быстродействию оперативной памяти. Вследствие этого в этих ЭВМ использовалась энергонезависимая память.
Энергонезависимая память позволяла хранить введенные в нее данные продолжительное время (до одного месяца) при отключении питания. Чаще всего в качестве энергонезависимой памяти использовались ферритовые сердечники. Они представляют собой тор, изготовленных из специальных материалов — ферритов. Ферриты характеризуются тем, что петля гистерезиса зависимости их намагниченности от внешнего магнитного поля носит практически прямоугольный характер.
Рис. 1. Диаграмма намагниченности ферритов.
Вследствие этого намагниченность этого сердечника меняется скачками (положение двоичного 0 или 1, рис. 1.) Поэтому, собрав схему, показанную на рисунке 2, практически собран простейший элемент памяти емкостью в 1 бит. Память на ферритовых сердечниках работала медленно и неэффективно: ведь на перемагничивание сердечника требовалось время и затрачивалось много электрической энергии. Поэтому с улучшением надежности элементной базы ЭВМ энергонезависимая память стала вытесняться энергозависимой — более быстрой, экономной и дешевой. Тем не менее, ученые разных стран по-прежнему ведут работы по поиску быстрой энергозависимой памяти, которая могла бы работать в ЭВМ для критически важных приложений, прежде всего военных.
Рис. 2. Схема элемента памяти на ферритовых сердечниках.
В отличие от памяти на ферритовых сердечниках полупроводниковая память энергозависимая. Это значит, что при выключении питания ее содержимое теряется.
Преимуществами полупроводниковой памяти перед ее заменителями являются малая рассеиваемая мощность, высокое быстродействие, компактность. 
Эти преимущества намного перекрывают недостатки полупроводниковой памяти, что делают ее незаменимой в ОЗУ современных компьютеров.
1.2. SRAM и DRAM.
Полупроводниковая оперативная память в настоящее время делится на статическое ОЗУ (SRAM) и динамическое ОЗУ (DRAM). Прежде, чем объяснять разницу между ними, рассмотрим эволюцию полупроводниковой памяти за последние сорок лет.
1.2.1. Триггеры.
Триггером называют элемент на транзисторах, который может находиться в одном из двух устойчивых состояний (0 и 1), а по внешнему сигналу он способен менять состояние. Таким образом, триггер может служить ячейкой памяти, хранящей, один бит информации. Любой триггер можно создать из трех основных логических элементов: И, ИЛИ, НЕ. Поэтому все, что относится к элементной базе логики, относится и к триггерам. Сама же память, основанная на триггерах, называется статической (SRAM).
1.2.2. Элементная база логики.
РТЛ - резистивно-транзисторная логика. Исторически является первой элеентной базой логики, работающей на ЭВМ второго поколения. Обладает большой рассеивающей мощностью (свыше 100 мВт на логический элемент). Не применялась уже в ЭВМ третьего поколения. 
ТТЛ - транзисторно-транзисторная логика. Реализована на биполярных 
транзисторах. Использовалась в интегральных схемах малой и средней степени интеграции. Обладает временем задержки сигнала в логическом элементе 10нс, а потребляемая мощность на элемент —10 мВт. 
ТТЛ-Шотки —это модификация ТТЛ с использованием диода Шотки. Обладает меньшим временем задержки (3 нс) и высокой рассеиваемой мощностью (20 мВт). 
ИИЛ - интегральная инжекторная логика. Это разновидность ТТЛ, базовым элементом которой являются не биполярные транзисторы одного рода (pnp или npn), а горизонтально расположенного p+n+p транзистора и вертикально расположенного npn транзистора. Это позволяет создать высокую плотность элементов на БИС и СБИС. При этом потребляемая мощность равна 50 мкВт на элемент и время задержки сигнала – 10 нс. 
ЭСЛ - логические элементы с эмиттерными связями. Эта логика также построена на биполярных транзисторах. Время задержки в них - 0,5-2 нс, потребляема мощность -25-50 мВт. 
Элементы на МДП (МОП) - транзисторах. Это схемы, в которых биполярные транзисторы заменены на полевые. Время задержки таких элементов составляет от 1 до 10 нс, потребляемая мощность - от 0,1 до 1,0 мВт
CMOS КМОП - логика (комплементарная логика.) В этой логике используются симметрично включенные n-МОП и p-МОП транзисторы. Потребляема мощность в статическом режиме - 50 мкВт, задержка - 10-50 нс. 
Как видно из этого обзора, логика на биполярных транзисторах самая быстрая, но одновременно самая дорогая и обладает высокой мощностью рассеивания. При прочих равных условиях логика на полевых транзисторах более медленная, но обладает меньшим электропотреблением и меньшей стоимостью.
Из вышесказанного понятно, что статическое ОЗУ - дорогой и неэкономичный вид ОЗУ. Поэтому его используют в основном для кэш-памяти, регистрах микропроцессорах и системах управления RDRAM 
Для того, чтобы удешевить оперативную память, в 90-х годах XX века вместо дорогого статического ОЗУ на триггерах стали использовать динамическое ОЗУ (DRAM). Принцип устройства DRAM следующий: система металл-диэлектрик-полупроводник способна работать как конденсатор. Как известно, конденсатор способен некоторое время "держать” на себе электрический заряд. Обозначив "заряженное” состояние как 1 и "незаряженное” как 0, мы получим ячейку памяти емкостью 1 бит. Поскольку заряд на конденсаторе рассеивается через некоторый промежуток времени (который зависит от качества материала и технологии его изготовления), то его необходимо периодически "подзаряжать” (регенерировать), считывая и вновь записывая в него данные. Из-за этого и возникло понятие "динамическая” для этого вида памяти.
За годы, прошедшие со времени создания первых микросхем DRAM, их развитие идет "семимильными" шагами по сравнению с SRAM. 
1.3. Динамическое ОЗУ.
Динамическое ОЗУ со времени своего появления прошло несколько стадий роста, и процесс ее совершенствования не останавливается. За свою историю DRAM меняла свой вид несколько раз. Вначале микросхемы динамического ОЗУ производились в DIP-корпусах. Затем их сменили модули, состоящие из нескольких микросхем: SIPP, SIMM и, наконец, DIMM и RIMM. Рассмотрим эти разновидности поподробнее.
1.3.1. Устаревшие модификации.
DIP-корпус - это исторически самая древняя реализация DRAM. DIP-корпус соответствует стандарту IC. Обычно это маленький черный корпус из пластмассы, по обеим сторонам которого располагаются металлические контакты (рис.3.1.).
 
Рис. .3.1. Модуль памяти DIP
Рис. 3.2. Банк модулей памяти DIP
Микросхемы (чипы) динамического ОЗУ устанавливаются так называемыми банками (рис.3,2). Банки бывают на 64, 256 Кбайт, 1 и 4 Мбайт. Каждый банк состоит из девяти отдельных одинаковых чипов. Из них восемь чипов предназначены для хранения информации, а девятый чип служит для проверки четности остальных восьми микросхем этого банка.
Чипы памяти могут быть одно- и четырехразрядными, и иметь емкость 64 Кбит, 256 Кбит, 1 и 4 Мбит. 
Следует отметить, что памятью с DIP-корпусами комплектовались персональные компьютеры с микропроцессорами i8086/88, i80286 и, частично, i80386SX/DX. Установка и замена этого вида памяти была нетривиальной задачей. Мало того, что приходилось подбирать чипы для банков памяти одинаковой разрядности и емкости, приходилось прилагать усилия и смекалку, чтобы чипы правильно устанавливались в разъемы. К тому же необходимо было не разрушить контакты механически, не повредить их инструментом, статическим электричеством, грязью и т.п. Поэтому уже в компьютерах с процессором i80386DX эти микросхемы стали заменять памяти SIPP и SIMM.
Одной из незаслуженно забытых конструкций модулей памяти являются SIPP-модули. Эти модули представляют собой маленькие платы с несколькими напаянными микросхемами DRAM.
SIPP является сокращением слов Single Inline Package. SIPP-модули соединяются с системной платой с помощью контактных штырьков. Под контактной колодкой находятся 30 маленьких штырьков (рис.3.3.), которые вставляются в соответствующую панель системной платы.
 
Рис. 3.3. Модуль памяти SIPP
Модули SIPP имели определенные вырезы, которые не позволяли вставить их в разъемы неправильным образом. Этот вид модулей лидировал по простоте их установки на системную плату.
1.3.2. SIMM-модули.
 
Рис. 3.4. Модуль памяти SIMM
Аббревиатура SIMM расшифровывается как Single Inline Memory Module (Модуль памяти с однорядным расположением выводов.) Он включает в себя все то, что для DIP называлось банком (рис. 3.4).
Модули SIMM могут иметь объем 256 Кбайт, 1, 2, 4, 8, 16 и 32 Мбайт. Соединение SIMM-модулей с системной платой осуществляется с помощью колодок (рис.3.5.)
Рис. 3.5. Установка модуля памяти SIMM
Модуль вставляется в пластмассовую колодку под углом 70 — градусов, а потом зажимается пластмассовым держателем. При этом плата встает вертикально. Специальные вырезы на модуле памяти не позволит поставить их неправильным образом.
Модули SIMM для соединения с системной платой имеют не штырьки, а позолоченные полоски (так называемые pin, пины).
Сравнение SIMM-модулей.
SIMM-модули в своем развитии прошли два этапа. Первыми представителями SIMM-модулей были 30-пиновые SIMM FPM DRAM. Их максимальная частота работы - 29 МГц. Стандартным же временем доступа к памяти считалось 70 нс. Эти модули уже с трудом работали на компьютерах с микропроцессорами i80486DX2, и были вытеснены сначала 72-пиновыми FPM DRAM, а затем EDO RAM. SIMM EDO RAM имеют только 72 пина и могут работать на частоте до 50 МГц. 
В настоящее время SIMM-модули, как 30-pin, так и 72-pin не удовлетворяют по своим характеристикам требованиям новых шин и процессоров. Поэтому они все активнее заменяются модулями DIMM.   
Причины повышения скорости работы EDO RAM.
Не смотря на небольшие конструктивные различия, и FPM, и EDO RAM делаются по одной и той же технологии, поэтому скорость работы должна быть одна и та же. Действительно, и FPM, и EDO RAM имеют одинаковое время считывания первой ячейки – 60-70 нс. Однако, в EDO RAM применен метод считывания последовательных ячеек. При обращении к EDO RAM активизируется не только первая, но и последующие ячейки в цепочке. Поэтому, имея то же время при обращении к одной ячейке, EDO RAM обращается к следующим ячейкам в цепочке значительно быстрее. Поскольку обращение к последовательно следующим друг за другом областям памяти происходит чаще, чем к ее различным участкам (если отсутствует фрагментация памяти), то выигрыш в суммарной скорости обращения к памяти значителен. Однако даже для EDO RAM существует предел частоты, на которой она может работать. Несмотря ни на какие ухищрения, модули SIMM не могут работать на частоте локальной шины PCI, превышающей 66 МГц. С появлением в 1996 году процессора Intel Pentium II и чипсета Intel 440BX частота локальной шины возросла до 100 МГц, что заставило производителей динамического ОЗУ перейти на другие технологии, прежде всего DIMM SDRAM.
1.3.3.DIMM
Аббревиатура DIMM расшифровывается как Dual Inline Memory Module (Модуль памяти с двойным расположением выводов). В модуле DIMM имеется 168 контактов, которые расположены с двух сторон платы и разделены изолятором. Также изменились и разъемы для DIMM-модулей.
Следует отметить, что разъем DIMM имеют много разновидностей DRAM. К тому же вплоть до последнего времени модули DIMM не имели средств самоконфигурирования (в отличие от SIMM-модулей). Поэтому, для облегчения выбора нужного модуля пользователям, на материнских платах разные типы DIMM имеют от одного до трех вырезов на модуле памяти. Они предотвращают от неправильного выбора и неправильной установки модулей памяти.
SDRAM.
Рис.3.6. Модуль памяти SDRAM
Аббревиатура SDRAM расшифровывается как Synchronic DRAM (динамическое ОЗУ с синхронным интерфейсом). Этим они отличаются от FPM и EDO DRAM, работающих по асинхронному интерфейсу.
С асинхронным интерфейсом процессор должен ожидать, пока DRAM закончит выполнение своих внутренних операций. Они обычно занимают 60 нс. В DRAM с синхронным управлением происходит защелкивание информации от процессора под управлением системных часов. Триггеры запоминают адреса, сигналы управления и данных. Это позволяет процессору выполнять другие задачи. После определенного количества циклов данные становятся доступными, и процессор может их считывать. Таким образом, уменьшается время просто процессора во время регенерации памяти.(......)
Loading

Календарь

«  Август 2017  »
ПнВтСрЧтПтСбВс
 123456
78910111213
14151617181920
21222324252627
28293031

Архив записей

Друзья сайта

  • Заказать курсовую работу!
  • Выполнение любых чертежей