Центральный Дом Знаний - Уравнения и неравенства. Нестандартные методы решения Справочник. Олехник С.Н., Потапов М.К., Пасич

Информационный центр "Центральный Дом Знаний"

Заказать учебную работу! Жми!



ЖМИ: ТУТ ТЫСЯЧИ КУРСОВЫХ РАБОТ ДЛЯ ТЕБЯ

      cendomzn@yandex.ru  

Наш опрос

Как Вы планируете отдохнуть летом?
Всего ответов: 924

Онлайн всего: 1
Гостей: 1
Пользователей: 0


Форма входа

Уравнения и неравенства. Нестандартные методы решения Справочник. Олехник С.Н., Потапов М.К., Пасич

Уравнения и неравенства. Нестандартные методы решения: Справочник

 Олехник С.Н., Потапов М.К., Пасиченко П.И.

 М.: Изд-во Факториал, 1997. - 219с. 

Справочник посвящен задачам, которые для школьников считаются задачами повышенной трудности, требующим нестандартных методов решений. Приводятся методы решений уравнений и неравенств, основанные на геометрических соображениях, свойствах функций (монотонности, ограниченности, четности), применении производной. Книга ставит своей целью познакомить школьников с различными, основанными на материале программы общеобразовательной средней школы, методами решения, казалось бы трудных задач, проиллюстрировать широкие возможности использования хорошо усвоенных школьных знаний и привить читателю навыки употреблять нестандартные методы рассуждений при решении задач. Для школьников, абитуриентов, руководителей математических кружков, учителей и всех любителей решать задачи.

Справочное издание.

 

 

Формат: djvu / zip

Размер: 970 Кб

 

Оглавление:
От авторов                                                                                                                      7
Глава I. Алгебраические уравнения и неравенства                                                    8
1.1.  Разложение многочлена на множители                                                                8
1.1.1.  Вынесение общего множителя                                                                           8
1.1.2.  Применение формул сокращенного умножения                                               9
1.1.3.  Выделение полного квадрата                                                                             10
1.1.4.  Группировка                                                                                                        10
1.1.5.  Метод неопределенных коэффициентов                                                          10
1.1.6.  Подбор корня многочлена по его старшему и свободному коэффициентам  11
1.1.7.  Метод введения параметра                                                                                13
1.1.8.  Метод введения новой неизвестной                                                                 13
1.1.9.  Комбинирование различных методов                                                              14
 1.2.    Простейшие способы решения алгебраических уравнений                               15
1.3.     Симметрические и возвратные уравнения                                                          19
 1.3.1.  Симметрические уравнения третьей степени                                                  19
1.3.2.  Симметрические уравнения четвертой степени                                             20
1.3.3.  Возвратные уравнения                                                                                       22
1.3.4.  Уравнения четвертой степени с дополнительными условиями на коэффициенты  25
1.4.  Некоторые искусственные способы решения алгебраических уравнений     27
1.4.1. Умножение уравнения на функцию                                                                  27
1.4.2. Угадывание корня уравнения                                                                            29
1.4.3. Использование симметричности уравнения                                                    32
1.4.4. Использование суперпозиции функций                                                            33
1.4.5. Исследование уравнения на промежутках действительной оси                    34
1.5. Решение алгебраических неравенств                                                                   3 5
1.5.1.  Простейшие способы решения алгебраических неравенств                           3 5
1.5.2.  Метод интервалов                                                                                               38
Задачи
Глава П. Уравнения и неравенства, содержащие радикалы, степени, логарифмы и модули 48
1.5.3.  Обобщенный метод интервалов                                                           41
2.1. Уравнения и неравенства, содержащие неизвестную под знаком корня        48
2.1.1.  Возведение в степень                                                                                     48
2.1.2.  Уравнения вида -Jf(x) ± -\lg(x) =h(x)                                                                 51
2.1.3.  Уравнения вида yf(x) ± \fg(x) = ф(х)                                                                  53
2.1.4.  Умножение уравнения или неравенства на функцию                                     56
2.2. Уравнения и неравенства, содержащие неизвестную в основании                 59
логарифмов
2.2.1.  Переход к числовому основанию                                                                      59
2.2.2.  Переход к основанию, содержащему неизвестную                                          64
2.2.3.  Уравнения вида log9(x) h(x) = log9(x) g(x)log/(x) ф(х) = log^(x) ф(х)                      65
2.2.4.  Уравнения вида log/(x) g(x) a                                                                           66
2.2.5.  Неравенства вида log9(x) f(x) log9(x) g(x)                                                           68
2.3.  Уравнения и неравенства, содержащие неизвестную в основании и 70 показателе степени
2.4.  Уравнения и неравенства, содержащие неизвестную под знаком 75 абсолютной величины
2.4.1.  Раскрытие знаков модулей                                                                                 75
2.4.2.  Уравнения вида |f(x)|=g(x)                                                                                  77
2.4.3.  Неравенства вида |f(x)|<g(x)                                                                                78
2.4.4.  Неравенства вида |f(x)|>g(x)                                                                                79
2.4.5.  Уравнения и неравенства вида |f(x)|=|g(x)|, |f(x)|<g(x)                                       81
2.4.6.  Использование свойств абсолютной величины                                  82
Задачи
Глава III. Способ замены неизвестных при решении уравнений                                  87
3.1. Алгебраические уравнения                                                                                    87
3.1.1.  Понижение степени уравнения                                                                         87
3.1.2.  Уравнения вида (х + ос)4 + (х +13)4 = с                                                            88
3.1.3.  Уравнения вида (х- а)(х-р)(х- f)(x- <5)=А                                                             89
3.1.4.  Уравнения вида (ах2 + Ьхх + с)(ах2 + Ь2х + с) = Ах2                                      90
3.1.5.  Уравнения вида (х- а)(х-р)(х- f)(x- S)=Ax^                                                        91
3.1.6.  Уравнения вида а(сх2 + рхх + q)2 + b(cx2 + p2x + q) = Ax2                             92
3.1.7.  Уравнения вида Р(х)=0, Р(х)=Р(а-х)                                                                93
3.2. Рациональные уравнения                                                                                     95
3.2.1.   Упрощение уравнения                                                                                      95
3.2.2.   Уравнения вида-------- 1— +----- — +... + —=— = А
x + pj     х + р2              х + рт
. _ . ,.                                 ос,х + а,    а2х + а2                  апх + ап     п                               99
3.2.3.   Уравнения вида —---------- - + —------ - + ... + —------- - = D
x + bx        x + b2                      Х + Ьп
. _ . ,.                                      a,x + h                   a2x + b2                         ax + bn                .    100
3.2.4.   Уравнения вида-------- ^----- !--- +----- ^---------- + - +------- Г---------- = А
_ _ _ ..                               a,x2+hx+c,    a2x2 + b2x + c2                          a„x2+b„x + c„      .    Ю2
3.2.5.   Уравнения вида —---------- ;----- L + —-------------- +... + —--------------- = А
а1х + ^>1                  а2х + |32                        а„х + |3„
^ „ ^ чт                                 Ах                    А2х                           Апх             „             103
3.2.6.   Уравнения вида —;—;------------- 1--- -2—---------- У... л------ —---------- = В
ах +Ьгх + с    ах +b2x + c                       ax +bnx + c
3.3.   Иррациональные уравнения                                                                                          104
3.3.1.       Уравнения вида -Jax + b ± yjcx + d f(x)                                                                    104
3.3.2.       Уравнения вида Ма-х ±Мх-Ь = d                                                                                  107
3.3.3.       Сведение решения иррационального уравнения к решению тригонометрического уравнения  111
3.4.   Уравнения вида                                                                                                           114
a0f"(x) + aif"-i(x)g(x) + ... + an_1f(x)g"-1(x) + ang"(x) = 0
3.5.   Решение некоторых уравнений сведением их к решению систем                                120
уравнений относительно новых неизвестных
Задачи                                                                                                                              127
Глава IV. Решение уравнений и неравенств с использованием свойств                                 131
входящих в них функций
4.1.   Применение основных свойств функций                                                                         131
4.1.1.       Использование ОДЗ                                                                                                 131
4.1.2.       Использование ограниченности функций                                                                     134
4.1.3.       Использование монотонности                                                                                    138
4.1.4.       Использование графиков                                                                                           141
4.1.5.       Метод интервалов для непрерывных функций                                                               147
4.2.   Решение некоторых уравнений и неравенств сведением их к решению        149
систем уравнений или неравенств относительно той же неизвестной
4.2.1.       Уравнения вида       /2(х) + /22(х) + ... + /к2(х) = 0,\Мх)\ + \/2(х)\+...+ \/к(х)\=0                       150
4.2.2.       Неравенства вида   f2(x) + f2(x) + ... + f2(x)>Q,\Mx)\ + \f2(x)\+...+ \fk(x)\>0                           151
4.2.3.       Использование ограниченности функций                                                                    153
4.2.4.       Использование свойств синуса и косинуса                                                                  155
4.2.5.       Использование числовых неравенств                                                                          158
4.3.   Применение производной                                                                                            160
4.3.1.  Использование монотонности                                                                         160
4.3.2.  Использование наибольшего и наименьшего значений функции                162
4.3.3.  Применение теоремы Лагранжа                                                                      166
Задачи 166
Ответы     172
Дополнение 1
Некоторые задачи из вариантов вступительных экзаменов по математике в      176
МГУ им. М. В. Ломоносова
Дополнение 2
Образцы вариантов письменных работ, предлагавшихся на вступительных       184
экзаменах по математике в МГУ им. М. В. Ломоносова в 1992—1994 гг.
Ответы к дополнению 2                                                                                             212

Loading

Календарь

«  Декабрь 2024  »
ПнВтСрЧтПтСбВс
      1
2345678
9101112131415
16171819202122
23242526272829
3031

Архив записей

Друзья сайта

  • Заказать курсовую работу!
  • Выполнение любых чертежей
  • Новый фриланс 24