Центральный Дом Знаний - Что делать, когда решить задачу не удается.  Финкельштейн В.М.

Информационный центр "Центральный Дом Знаний"

Заказать учебную работу! Жми!



ЖМИ: ТУТ ТЫСЯЧИ КУРСОВЫХ РАБОТ ДЛЯ ТЕБЯ

      cendomzn@yandex.ru  

Наш опрос

Как Вы планируете отдохнуть летом?
Всего ответов: 854



Что делать, когда решить задачу не удается.  Финкельштейн В.М.



4-е изд., перераб. - М.: ИЛЕКСА, 2008 - 74 с.


В пособии кратко и доступно изложены рекомендации по решению задач, и к каждой рекомендации даны обстоятельные пояснения.

В нем используются задачи, интересные и поучительные по содержанию. Доходчиво рассказано о таких понятиях, как определение, доказательство от противного. Автор привлекает читателя к совместному поиску решений задач.

Пособие адресовано учащимся 7-11 классов. Оно с успехом может быть использовано учителями при объяснении школьникам, как решать задачу, студентами педагогических вузов, готовящимися к педагогической практике, педагогами довузовской подготовки и абитуриентами.



СОДЕРЖАНИЕ:
К читателю 5
1. Изучение задачи 7
Рекомендации 7
Первые шаги 7
Дальнейшее изучение задачи 7
Пояснения 8
Зачем нужны рекомендации? 8
Обязательно ли выполнять все рекомендации? 8
Что такое объект? 8
Как различать свойства и признаки? 8
Зачем разделять условие на части? 9
Зачем записывать все условия и все требования? 9
Как убедиться, что понято каждое слово? 11
Что такое определение? 11
Зачем заменяют термин определением? 13
Как выбирают обозначения? 14
Что такое схема? 19
Почему ОДЗ нужно определять в начале решения? 20
Разве могут быть условия задачи противоречивыми? 21
2. Поиск решения 22
Рекомендации 22
Начало поиска 22
Выбор направления поиска 22
Видоизменение задачи 23
Что делать, когда решить задачу не удается? 24
Пояснения 25
Зачем выдвигать несколько гипотез? 25
Что значит преобразовать исходные данные, найти следствие из условия 27
Приведите пример решения от начала 28
Что значит преобразовать конечный результат? 30
Приведите пример поиска решения от конца 31
Что значит решать попеременно? 33
В каком случае часть условий задачи в начале решения не используется 35
Как разделяют задачу на части? 38
Зачем вводить новую переменную? 41
Когда и какие делают вспомогательные построения? 42
Как можно изменить чертеж? 48
Что значит более общая задача? 50
Когда рассматривают частные случаи? 50
Что такое предельный случай? 52
Приведите примеры применения векторов 54
Покажите применение метода координат 55
Как решают задачи от противного? 55
Покажите решение задач методом математической индукции 59
Что значит видоизменить задачу? 62
Зачем составляют план решения? 64
3. Осуществление плана, обоснование и проверка 65
Рекомендации 65
Пояснения 65
Зачем делать проверку? 65
Из-за чего решение может быть неверным? 66
Как проверить решение? 67
Зачем давать обоснование? 68
4. Заключительный этап решения задачи 69
Рекомендации 69
Дополнение к рекомендациям четвертого этапа 69
Пояснения 69
Когда равные фигуры считают за одно решение? 69
Зачем составлять подобную задачу? 70
Как составить обратную задачу? 70
Как узнать, где пригодится решенная задача? 71
Как освоить рекомендации? 72
Литература 73

Loading

Календарь

«  Август 2017  »
ПнВтСрЧтПтСбВс
 123456
78910111213
14151617181920
21222324252627
28293031

Архив записей

Друзья сайта

  • Заказать курсовую работу!
  • Выполнение любых чертежей