АДЕНОЗИИМОНОФОСФАТ ЦИКЛИЧЕСКИЙ (цАМФ, циклический АМФ), производное АТФ, выполняющее в организме роль вторичного мессенджера, использующегося для внутриклеточного распространения сигналов некоторых гормонов (например, глюкагона или адреналина), которые не могут проходить через клеточную мембрану.АМФ
циклический (cAMP) синтезируется аденилатциклазой в ответ на некоторые гормональные стимуляторы;действует как второй посредник при клеточном гормональном контроле путем стимуляции протеинкиназ. Аденилатциклазы, катализируют реакцию циклизации АТФ (ATP) с образованием АМФ (AMP) катализируется фосфодиэстеразами, которые ингибируются при высоких концентрациях метилированных производных ксантина, например кофеином.
цАМФ является аллостерическим эффектом протеинкиназ А и ионных каналов. В неактивном состоянии протеинкиназа А является тетрамером, две каталитические субъединицы (К-субьединицы) которого ингибированы регуляторными субъединицами (Р-субъединицы) (аутоингибирование). При связывании цАМФ Р-субъединицы диссоциируют из комплекса и К-единицы активируются. Фермент может фосфорилировать определенные остатки серина и треонина в более чем 100 различных белках, в том числе во многих ферментах. цАМФ-вторичный мессенджер, то есть осуществляет функцииции внутриклеточного посредника в действии первичных мессенджеров-ряда гормонов и нейромедиаторов нервного возбуждения. Такие вещества образуются из доступных субстратов и имеют короткий биохимический полупериод. Таким образом, гормоны, которые действуют через цАМФ, осуществляют свою биологическую функцию путем фосфорилирования специфических ферментов и посредством этого изменяют (увеличивают или уменьшают) их активность.При активации аденилатциклазы, катализирующей биосинтез цАМФ, или блокировании фосфодиэстеразы, осуществляющей гидролиз этого нуклеотида, концентрация цАМФ в клетке быстро увеличивается. Содержание цАМФ в клетке определяется соотношением активностей этих двух ферментов. Связь между гормоном или др. химическим сигналом (первый посредник) и цАМФ (второй посредник) осуществляет аденилатциклазный комплекс, включающий рецептор, настроенный на определённый гормон (или др. биологически активное вещество) и расположенный на внешней стороне клеточной мембраны, и аденилатциклазу, расположенную на внутренней стороне мембраны. Гормон, взаимодействуя с рецептором, во многих случаях активизирует аденилатциклазу, которая катализирует биосинтез цАМФ. Концентрация цАМФ, образующегося т. о. в клетке, превышает концентрацию действующего на клетку гормона в 100 раз. В основе механизма действия цАМФ в тканях животных и человека лежит его взаимодействие с протеинкиназами ферментами, активность которых проявляется в присутствии этого нуклеотида. Связывание цАМФ с регуляторной субъединицей протеинкиназы приводит к диссоциации фермента и активации его каталитической субъединицы, которая, освободившись от регуляторной субъединицы, способна фосфорилировать определённые белки (в том числе ферменты). Изменение свойств этих макромолекул путём фосфорилирования меняет и соответствующие функции клеток. цАМФ играет определённую роль в морфологии, подвижности, пигментации клеток, в кроветворении, клеточном иммунитете, вирусной инфекции и др. У бактерий цАМФ, соединившись с неферментным рецепторным белком, присоединяется к ДНК и позволяет ферменту РНК-полимеразе начать транскрипцию гена, ответственного за синтез индуцируемого фермента. Т. о., механизм действия цАМФ у бактерий и в тканях животных и человека принципиально различен. Исследования роли Ц. н. в живых клетках одно из наиболее быстро развивающихся направлений в биохимии, уже внёсшее существенный вклад в понимание механизмов биологической регуляции на молекулярном уровне.
У бактерий при недостатке в среде легкоусвояемых соединений, например глюкозы, увеличивается содержание цАМФ в клетке, что приводит к биосинтезу адаптивных (индуцируемых) ферментов, необходимых для усвоения др. источников питания. Уровень цАМФ в клетках сальмонеллы Salmonella thyphimurium определяет будущее попавшего в неё фага (при высокой концентрации цАМФ происходит лизогенизация культуры бактерий, при низкой фаг вызывает её лизис). У миксоамёбы Dictyostelium discoideum цАМФ играет роль аттрактанта, привлекающего клетки друг к другу. У высших растений цАМФ опосредует влияние фитохрома на синтез пигментов бетационинов (у Amaranthus paniculatus). Участвует также в регуляции обмена углеводов и липидов, клеточного роста, мембранного транспорта. В бактериальных клетках цАМФ, взаимодействуя со специфич. рецепторным белком, вызывает в нем конформационные изменения, в результате чего белок приобретает способность связываться с клеточной ДНК и регулировать активность генов. В клетках высших организмов цАМФ активирует фермент протеинкиназу, который катализирует перенос остатка фосфорной кислоты с АТФ на белок. Активация заключается в связывании цАМФ с регуляторной субъединицей фермента, в результате чего освобождается активная каталитическая. субъединица, которая и осуществляет реакцию. Протеинкиназа может катализировать фосфорилирование некоторых ферментов, а также ряда регуляторных и структурных белков, что приводит к изменению их св-в. Так, фермент киназа фосфорилазы b фосфорилируется с образованием активной формы, к-рая сама в свою очередь катализирует фосфорилирование др. фермента-фосфорилазы b. Последняя ускоряет распад гликогена в организме.