Аксиоматика Гильберта, система аксиом евклидовой геометрии. Разработана Гильбертом как более полная, нежели система аксиом Евклида.
Неопределяемыми в этой системе аксиом понятиями являются: точка, прямая линия, плоскость. Есть также 3 элементарных бинарных отношения:
Лежать между, применимо к точкам;
Содержать, применимо к точкам и прямым, точкам и плоскостям или прямым и плоскостям;
Конгруэнтность (геометрическое равенство), применимо, например, к отрезкам, углам или треугольникам, и обозначается инфиксным символом ≅.
Все точки, прямые и плоскости предполагаются различными, если не оговорено особое.
Система из 20 аксиом поделена на 5 групп:
аксиомы принадлежности:
планиметрические:
Каковы бы ни были две точки A и B, существует прямая a, которой принадлежат эти точки.
Каковы бы ни были две различные точки A и B, существует не более одной прямой, которой принадлежат эти точки.
Каждой прямой a принадлежат по крайней мере две точки. Существуют по крайней мере три точки, не принадлежащие одной прямой.
стереометрические:
Каковы бы ни были три точки A, B и C, не принадлежащие одной прямой, существует плоскость α, которой принадлежат эти три точки. Каждой плоскости принадлежит хотя бы одна точка.
Каковы бы ни были три точки A, B и C, не принадлежащие одной прямой, существует не более одной плоскости, которой принадлежат эти точки.
Если две принадлежащие прямой a различные точки A и B принадлежат некоторой плоскости α, то каждая принадлежащая прямой a точка принадлежит указанной плоскости.
Если существует одна точка A, принадлежащая двум плоскостям α и β, то существует по крайней мере ещё одна точка B, принадлежащая обеим этим плоскостям.
Существуют по крайней мере четыре точки, не принадлежащие одной плоскости.
аксиомы порядка:
линейные:
Если точка B прямой а лежит между точками А и С той же прямой, то А, В и С — различные точки указанной прямой, причем В лежит также и между С и А.
Каковы бы ни были две различные точки А и С, на определяемой ими прямой существует по крайней мере одна точка В такая, что С лежит между А и В.
Среди любых трёх точек, лежащих на одной прямой, существует не более одной точки, лежащей между двумя другими.
Аксиома Паша
аксиомы конгруэнтности:
конгруэнтность отрезков:
Если А и В — две точки на прямой а, А’ — точка на той же прямой или на другой прямой а’, то по данную от точки А’ сторону прямой а’ найдется, и притом только одна, точка В’ такая, что отрезок А’B’ конгруэнтен отрезку АВ. Каждый отрезок АВ конгруэнтен отрезку ВА.1
Если отрезки А’B’ и А"B" конгруэнтны одному и тому же отрезку АВ, то они конгруэнтны и между собой.
Пусть АВ и ВС — два отрезка прямой а, не имеющие общих внутренних точек, А’B’ и B’C’ — два отрезка той же прямой, или другой прямой а’, также не имеющие общих внутренних точек. Тогда если отрезок АВ конгруэнтен отрезку А’B’, а отрезок ВС конгруэнтен отрезку B’C’, то отрезок АС конгруэнтен отрезку А’C’.
конгруэнтность углов:
Если даны угол ∠ABC и луч B’C', лежащий в плоскости данного угла, тогда существует ровно два луча, также лежащие в плоскости данного угла, B’D и B’E, такие, что ∠DB’C' ≅ ∠ABC и ∠EB’C' ≅ ∠ABC.
Следствие. Каждый угол конгруэнтен сам себе.
Треугольники ΔABC ≅ ΔA’B’C', если AB ≅ A’B', AC ≅ A’C', и ∠BAC ≅ ∠B’A’C'.
аксиомы непрерывности
Аксиома Архимеда. Если даны отрезок CD и луч AB, то существует число n и n точек A1,…,An на AB таких, что: AjAj+1 ≅ CD, , и B лежит между A1 and An.
«Полнота линии». Добавление хотя бы одной дополнительной точки в прямую линию вызовет противоречие с одной из аксиом принадлежности, порядка, первыми двумя аксиомами конгруэнтности или аксиомой Архимеда.
аксиома параллельности, для которой Гильберт выбрал не евклидовскую формулировку, а эквивалентную ей, но более простую аксиому Прокла:
Пусть a есть произвольная прямая и A — точка вне её; тогда в плоскости, определяемой точкой А и прямой а, можно провести не более одной прямой, проходящей через A и не пересекающей a.
Гильберт изначально (1899) включил 21-ю аксиому:
«Любым четырём точкам на прямой можно присвоить имена A, B, C, и D так, чтобы точка B лежала между точками A и C, а также между A и D; точка C — между A и D, а также между B и D».
Э.Х. Мур (англ.) доказал в 1902 году, что эта аксиома избыточна.
Аксиоматическая схема евклидовой геометрии была опубликована Давидом Гильбертом в 1899 году в праздничном томе «Festsehrift», посвящённом открытию в Гёттингене памятника Карлу Фридриху Гауссу и его другу физику Вильгельму Веберу. Ныне «Основания геометрии» изданы на многих языках мира, одно из двух изданий на русском языке указано внизу в ссылках.
Создатели догильбертовских систем:
Евклид
Паш
Шур
Пеано (включает понятие «движение»)
Веронезе
М. Пиери (1899)
Родственные гильбертовой:
В. Ф. Каган (1902)
О. Веблен (1904)
А. Колмогоров
Более современые аксиоматики:
аксиоматика Тарского
аксиоматика Биргофа — содержит «аксиому линейки» и «аксиому транспортира». Её варианты используются в большинстве американских школьных учебников, к ней близка аксиоматикаПогорелова.
Аксиоматика Вейля — оперирует неопределяемыми понятиями точки и свободного вектора. Прямая и плоскость определяются как множества точек.