Курс чистой математики.
Г.Х. Харди.
Пер. с англ. - М.: Изд-во Иностранной литературы, 1949 - 512с.
Книга выдающегося английского математика, профессора Кембриджского университета Годфри Гарольда Харди (1877--1947) содержит основные положения математического анализа, разобранные с исчерпывающей полнотой и всей необходимой математической строгостью. В нее также включено большое количество интересных задач и примеров, представляющих собой хороший материал для самостоятельной проработки важнейших положений анализа.
Рекомендуется математикам -- преподавателям математического анализа и студентам первых курсов естественных вузов.
Формат: djvu / zip
Размер: 5,6 Мб
Из предисловия автора к первому изданию
Эта книга написана в первую очередь для студентов первых курсов университетов, способности которых приближаются к тому уровню, который обычно требуется для получения стипендии. Я надеюсь, что она окажется полезной и для другого круга читателей, но в основном я учитывал интересы именно этого круга. Во всяком случае эта книга написана для математиков; я нигде не пытался идти навстречу студентам технических специальностей, и вообще не принимал во внимание запросов тех читателей, чьи интересы не являются в первую очередь математическими.
Я рассматриваю эту книгу как действительно элементарную. В ней содержится много трудных примеров (преимущественно в конце глав); такие примеры я снабжал, где это было возможно с точки зрения объема, указаниями к решению. Но я всячески старался избегать действительно трудных понятий. Например, равномерная сходимость, двойные ряды, бесконечные произведения даже не упоминаются в этой книге; я не доказываю никаких общих теорем относительно перестановки предельных переходов. В последних двух главах иногда интегрируется степенной ряд, но я ограничиваюсь только простейшими случаями и для каждого из них провожу специальное исследование.
Сентябрь 1908 г.
Предисловие автора к седьмому изданию
В этом издании книга подверглась самым серьезным изменениям со времени второго издания. Я воспользовался тем, что книга заново набиралась, и это дало мне возможность свободно изменять ее содержание.
Бывшее Приложение II (относительно обозначений "О, о и tilde") я включил в соответствующих местах в текст книги. Заново написаны части глав VI и VII, относящиеся к элементарным свойствам производных. Здесь я следую курсу де ла Валле-Пуссена; эта часть книги несомненно значительно улучшена. Эти важные изменения повлекли за собой, конечно, много других более мелких исправлений.
Я включил большое число новых примеров из числа задач, предлагавшихся на экзаменах в Кэмбридже за последние 20 лет, которые будут полезны кэмбриджским студентам. Эти задачи были подобраны для меня Лявом (E.R.Love), который прочел также все гранки и исправил много ошибок.
Общий план книги остался без изменений. Внимательно перечитывая книгу впервые за 20 лет, я неоднократно испытывал желание произвести в ней более радикальные изменения как в содержании, так и в стиле. Она была написана в то время, когда в Кэмбридже пренебрегали математическим анализом, и ее патетический стиль кажется теперь немного смешным. Если бы я переписал ее теперь, то я бы уже не писал (по выражению проф. Литтльвуда) как "проповедник, разговаривающий с каннибалами", а значительно суше и с соответствующей сдержанностью. Более того, я писал бы гораздо короче и смог бы включить значительно больше материала. Книга приняла бы характер обычного курса анализа.
Для такого начинания я не располагаю достаточным временем, и возможно, что это к лучшему, так как, вероятно, я написал бы значительно лучшую, но гораздо менее оригинальную книгу. Эта книга была бы не так полезна в качестве введения к руководствам по анализу, в которых теперь даже в Англии нет недостатка.
Ноябрь 1937 г.