Центральный Дом Знаний - Актиноиды 3

Информационный центр "Центральный Дом Знаний"

Заказать учебную работу! Жми!



ЖМИ: ТУТ ТЫСЯЧИ КУРСОВЫХ РАБОТ ДЛЯ ТЕБЯ

      cendomzn@yandex.ru  

Наш опрос

Как Вы планируете отдохнуть летом?
Всего ответов: 922

Онлайн всего: 1
Гостей: 1
Пользователей: 0


Форма входа

Логин:
Пароль:

Актиноиды 3

к началу

Температура плавления актиноидов изменяется при увеличении числа f-электронов нелинейно. С ростом числа данных электронов температура плавления сначала (от протактиния к плутонию) понижается, а затем (от америция к кюрию) повышается. Уникально низкую температуру плавления у плутония объясняют гибридизацией 5f- и 6d-орбиталей и образованием направленных связей в этих металлах. От кюрия до эйнштейния температура плавления снова понижается, а затем возрастает до максимума у фермия. Аналогичная кривая температур плавления повторяется от фермия до лоуренсия.

Для А. от америция до эйнштейния при любых температурах ниже температуры плавления характерны гранецентрированная кубическая и гексагональная плотнейшие упаковки. Для трансурановых элементов сходство с металлическими лантаноидами усиливается — при комнатной температуре кристаллические структуры А. от америция до калифорния и лёгких лантаноидов аналогичны.

Сравнительная характеристика радиусов ионов лантаноидов и актиноидов

Лантаноиды

Радиусы ионов Ln3+, Å

Актиноиды

Радиусы ионов M3+, Å

Радиусы ионов M4+, Å

Лантан

1,061

Актиний

1,11

Церий

1,034

Торий

1,08

0,99

Празеодим

1,013

Протактиний

1,05

0,93

Неодим

0,995

Уран

1,03

0,93

Прометий

0,979

Нептуний

1,01

0,92

Самарий

0,964

Плутоний

1,00

0,90

Европий

0,950

Америций

0,99

0,89

Гадолиний

0,938

Кюрий

0,98

0,88

Тербий

0,923

Берклий

Диспрозий

0,908

Калифорний

Гольмий

0,894

Эйнштейний

Эрбий

0,881

Фермий

Тулий

0,869

Менделевий

Иттербий

0,858

Нобелий

Лютеций

0,848

Лоуренсий

Все А. являются химически активными металлами.

Подобно лантаноидам, 5f-элементы обладают высокой химической активностью по отношению к кислороду, галогенам, азоту, сере. Так, торий, уран и нептуний уже при комнатной температуре медленно окисляются на воздухе. Чистый плутоний, оставленный на воздухе является пирофорным.

Различие химических свойств А. и лантаноидов проявляется в том, что актиноиды легче вступают в реакции и имеют разные валентные состояния. Это объясняется меньшим размером 5f-орбиталей по сравнению с 4f-орбиталями, их экранированностью внешними электронами и поэтому способностью к более легкому расширению за пределы 6s- и 6p-орбиталей. А. склонны к гибридизации. Особенно это характерно для тех элементов, атомы которых имеют малое количество 5f-электронов. Объясняется это тем, что энергии 5f-, 7s- и 6d-подуровней очень близки.

Большинство элементов данной группы могут иметь разные степени окисления, причем в наиболее стабильных соединениях проявляются следующие степени окисления:

  • актиний — +3

  • торий — +4

  • протактиний — +5

  • уран — +6

  • нептуний — +5

  • плутоний — +4

  • америций и остальные актиноиды — +3

По химическим свойствам актиний напоминает лантан, что объясняется, в первую очередь, их сходными ионными радиусами. Подобно лантану, для актиния свойственна лишь степень окисления +3. Актиний в отличие от лантана проявляет более слабую реакционную способность и более ярко выраженные основные свойства. Среди остальных трёхзарядных ионов Ac3+выделяется присутствием наиболее слабых кислотных свойств, то есть актиний в водных растворах гидролизуется лишь в незначительной степени.

Торий характеризуется высокой химической активностью. Для тория, как и для элементов четвёртой группы, характерна степень окисления +4. Из-за отсутствия электронов на 6d- и 4f-орбиталях соединения четырёхвалентного тория не имеют окраски. В растворах солей тория при pH < 3 преобладают катионы [Th(H2O)8]4+. Ион Th4+ имеет необычайно большой радиус; в зависимости от координационного числа он может принимать значения от 0,95 до 1,14 Å. Именно с данной характерной особенностью связана низкая способность солей тория к гидролизу. Отличительной способностью солей тория считается их высокая растворимость не только в воде, но и в полярных органических растворителях.

Протактиний имеет два валентных состояния — 5 и 4. В отличие от стабильного пятивалентного состояния четырёхвалентный протактиний в растворах чрезвычайно легко окисляется до Pa5+кислородом воздуха. В связи с этим четырёхвалентный протактиний в растворах получают действием сильных восстановителей в атмосфере водорода. Четырёхвалентный протактиний по химическим свойствам является близким аналогом UIV и тория. Известно, что PaVI образует много кристаллических соединений, изоструктурных с соединениями UIV и тория. Фториды, фосфаты, гипофосфаты, иодаты и фениларсонаты PaIV нерастворимы в воде и в достаточно разбавленных кислотах. Протактиний образует растворимые карбонаты. По гидролитическим свойствам пятивалентный протактиний близок к TaV и NbV. Сложность химического поведения протактиния является следствием появления у атомов данного элемента 5f-орбит.

Для урана, как и для многих d-элементов, характерно наличие нескольких степеней окисления, в частности, уран принимает значения валентности от 3 до 6, наиболее устойчивой степенью окисления является +6. В шестивалентном состоянии уран является полным электронным аналогом элементов шестой группы, хотя значительная разница в радиусах ионов U6+ и W6+делает сходство между ними лишь формальным (однако они имеют одинаковые составы высших оксидов и некоторых оксоанионов. В соединениях уранаIV и уранаVI присутствует ряд нестехиометрических соединений, то есть оксиды переменного состава. К примеру, химическую формулу его диоксида — UO2 — правильнее записывать UO2+x, где xимеет значения от −0,4 до +0,32. Соединения уранаVI не являются сильными окислителями. Соединения уранаIV проявляют восстановительные свойства, например легко окисляются кислородом из воздуха. Соединения уранаIII являются очень сильными восстановителями. Уран склонен к образованию металлоорганических соединений. Данное свойство объясняется наличием d-орбитали.

Для нептуния возможны валентности 3, 4, 5, 6 и 7. В растворах он может находиться одновременно в нескольких из них. Это объясняется диспропорционированием пятивалентного нептуния в сильнокислых растворах из-за близости редокс-потенциалов ионных пар нептуния. Наиболее стабильными в растворах являются ионы NpV. В твёрдых соединениях нептуний устойчив и проявляет валентность 4. Ионы NpIII и NpIV, как и других актиноидов, существуют в воде в качестве гидратированных катионов вышеуказанных ионов нептуния. NpIII гидролизуется в слабощелочной среде. Металлический нептуний очень реакционноспособен. Ионы данного элемента отличаются высокой склонностью к образованию координационных соединений игидролизу.

Для плутония, так же как и для нептуния, возможны валентности от 3 до 7. Химическое поведение плутония аналогично для урана и нептуния. В химическом отношении плутоний является весьма активным элементом. На воздухе он окисляется, образуя плёнку из PuO при 50 °C. Плутоний заметно реагирует с водородом даже при 25—50 °C. Металлический плутоний довольно активно взаимодействует с галогенами и галогеноводородами. Данный элемент обладает сильным потенциалом к образованию интерметаллических соединений. Реакции гидролиза ионов плутония разных степеней окисления довольно разнообразны. Для PuIV в зависимости от условий характерны реакции полимеризации.

Наибольшим разнообразием отличается америций, у которого достоверно установлено наличие степеней окисления от +2 до +6. Двухвалентный америций получен только в сухих соединениях и в неводных растворах (ацетонитриле). Состояния окисления +3, +5 и +6 характерны для водных растворов америция, хотя известно большое количество соответствующих им твёрдых соединений. Четырёхвалентный америций образует устойчивые твёрдые соединения (диоксид, фторид, гидроксид америция), в водном растворе он существует в виде различныхкомплексных соединений. Сообщалось, что в щелочном растворе америций может быть окислен до семивалентного состояния, однако эти данные оказались ошибочными. Наиболее устойчивой валентностью америция в водном растворе является +3, в твёрдых соединения +3 и +4.

Валентность +3 является доминирующей у всех последующих элементов вплоть до лоуренсия (за исключением, возможно, нобелия). Кюрий существует в четырёхвалентном состоянии в твёрдых соединениях (фторид, диоксид кюрия), а в водном растворе — только в виде неустойчивого фторидного комплексного соединения. Сообщалось об окисления кюрия в водном растворе до шестивалентного состояния, однако другие исследователи не смогли воспроизвести этот результат.

Берклий, наряду с валентностью +3, также проявляет валентность +4, более устойчивую чем у кюрия; ей отвечает ряд твёрдых соединений (фторид, диоксид берклия), а в водном растворе устойчивость иона Bk4+ близка к устойчивости иона Ce4+. У калифорния, эйнштейния и фермия единственной достоверной валентностью является +3. Доказано наличие двухвалентного состояния у менделевия и нобелия, причем у нобелия оно является более устойчивым, чем трёхвалентное. Валентности двух последних трансплутониевых элементов — лоуренсия и резерфордия — очень скудны; известно, что лоуренсий как в растворе, так и в сухих соединениях проявляет только валентность +3; а резерфордий в виде хлорида ведет себя подобногафнию, то есть, по-видимому, четырёхвалентен.

Из-за того что торий, протактиний и уран имеют высокие стабильные степени окисления, их иногда ставят как элементы побочных подгрупп четвёртой, пятой и шестой групп. Если бы и действительно существовала такая тенденция, трансурановые элементы должны были бы находится в восьмой и седьмой группах, и у них легче, чем у урана, должна была бы проявляться высокая валентность. Но этого не наблюдается, потому что от урана до америция способность создавать соединения с валентностью +6 уменьшается. В этом можно убедиться, проставляя полученные в стандартных условиях редокс-потенциалы :

  • уран: −0,32 в,

  • нептуний: +0,34 в,

  • плутоний: +1,04 в,

  • америций: +1,34 в.

Отсюда напрашивается вывод, что восстановительная способность иона M4+ возрастает от америция до урана.

Как и лантаноиды, все металлы-актиноиды легко соединяются с кислородом, галогенами и халькогенами, углеродом, водородом и серой. Для америция установлено, что возможно получить гидрид данного вещества — AmH3. Торий, протактиний и уран также соединяются с водородом при 250 °C. Создают гидриды и другие А. Гидриды с общей формулой MH3 своими свойствами напоминают соли. Все соединения имеют чёрный цвет.

При реакции с углеродом А. преимущественно создают карбиды с общей формулой MC, MC2, а уран U2C3. С серой они производят сульфиды с общей формулой M2S3 и MS2. 

Для некоторых А. известно несколько оксидов: M2O3, MO2, M2O5 и MO3. Для всех металлов оксиды M2O3, MO2 и M2O5 — осно́вные, а MO3 — амфотерные. Более выражены основные свойства оксидов. Они легко соединяются с водой, образуя основания.

Данные основания плохо растворяются в воде, а по своей активности близки к гидроксидам редкоземельных металлов. Наиболее сильным из этих оснований является гидроксид актиния. Актиний сравнительно легко взаимодействует с водой, вытесняя водород. Все соединения актиния, кроме его чёрного сульфида (Ac2S3), имеют белую окраску.

Оксиды четырёхвалентных актиноидов кристаллизуются в кубическую сингонию, структура кристалла типа флюорита (фторид кальция).

Диоксиды некоторых актинидов

Название соединения

Диоксид тория

Диоксид протактиния

Диоксид урана

Диоксид нептуния

Диоксид плутония

Диоксид америция

Диоксид кюрия

Диоксид берклия

Диоксид калифорния

CAS-номер

1314-20-1

12036-03-2

1344-57-6

12035-79-9

12059-95-9

12005-67-3

12016-67-0

12010-84-3

12015-10-0

PubChem

14808


10916







Химическая формула

ThO2

PaO2

UO2

NpO2

PuO2

AmO2

CmO2

BkO2

CfO2

Молярная масса

264,04 г·моль−1

263,035 г·моль−1

270,03 г·моль−1

269,047 г·моль−1

276,063 г·моль−1

275,06 г·моль−1

270–284 г·моль−1

279,069 г·моль−1

283,078 г·моль−1

Температура плавления

3390 °C


2878 °C

2600 °C

2400 °C

2050 °C




Температура кипения

4400 °C




2800 °C





Структура


An4+: __  /  O2−: __

Пространственная группа

Координационное число

An[8], O[4]

An — актиноид(-ы)

Торий, соединяясь с кислородом, образует лишь диоксид. Его можно получить при сжигании металлического тория в кислороде при температуре в 1000 °C, или нагреванием некоторых его солей.

Диоксид тория является тугоплавким веществом (температура плавления 3220 °C), очень стоек к нагреванию. Из-за этого свойства диоксид тория иногда используют в производстве огнеупорных материалов. Добавление 0,8—1 % ThO2 к чистому вольфраму стабилизирует его структуру; поэтому волоски электроламп имеют лучшую устойчивость при вибрациях.

продолжение

Loading

Календарь

«  Май 2024  »
ПнВтСрЧтПтСбВс
  12345
6789101112
13141516171819
20212223242526
2728293031

Архив записей

Друзья сайта

  • Заказать курсовую работу!
  • Выполнение любых чертежей
  • Новый фриланс 24