Центральный Дом Знаний - Актиноиды

Информационный центр "Центральный Дом Знаний"

Заказать учебную работу! Жми!



ЖМИ: ТУТ ТЫСЯЧИ КУРСОВЫХ РАБОТ ДЛЯ ТЕБЯ

      cendomzn@yandex.ru  

Наш опрос

Как Вы планируете отдохнуть летом?
Всего ответов: 922

Онлайн всего: 1
Гостей: 1
Пользователей: 0


Форма входа

Логин:
Пароль:

Актиноиды

стр.: 1  2  3  4  5

Актиноиды, актиниды, семейство из 14 химических элементов с атомными номерами Z 90 — 103, расположенных в 7 периоде системы Менделеева за актинием Ac и относящихся, как и актиний, к III группе системы. К А. принадлежат: торий Th (Z=90), протактиний Pa(91), уран U (92), нептуний Np(93), плутоний Pu (94), америций Am (95), кюрий Cm(96), берклий Bk (97), калифорний Cf (98), эйнштейний Es (99), фермий Fm (100), менделевий Md (101), элемент № 102, не имеющий пока общепринятого названия, и лоуренсий Lr (103). Все А. радиоактивны, т. е. не имеют стабильных изотопов. Th, Pa и U принадлежат к естественно-радиоактивным элементам, встречающимся в природе, и открытым ранее др. А. Остальные А., часто называемые трансурановыми элементами, получены в 1940—63 искусственным путём при помощи ядерных реакций. Из них только Np и Pu обнаружены в ничтожно малых количествах в некоторых радиоактивных рудах, более «тяжёлые» А. (т. е. А. с большими атомными номерами) в природе не найдены. Огромная заслуга в изучении А. принадлежит американскому химику Г. Т. Сиборгу, который выдвинул гипотезу о существовании группы А. (1942) и под руководством или при участии которого было впервые синтезировано девять А. Выделение А. в специальное семейство связано со схожестью химических свойств этих элементов между собой и с актинием, что объясняется сходным строением наружных электронных оболочек их атомов (см. ниже).

  Название А. (от актиний и греч. éidos — вид) означает — подобные актинию. Оно дано А. по аналогии с лантаноидами — семейством из 14 элементов, также относящихся к III группе системы Менделеева и следующих в 6-м периоде за лантаном. Свойства элементов обоих семейств во многом сходны друг с другом.

  Близость химических свойств А. между собой и их сходство с лантаноидами связаны с особенностями строения электронных оболочек атомов этих семейств. Как известно, атом состоит из ядра и электронных оболочек, число которых равно номеру периода элемента в таблице Менделеева (у А. электронных оболочек 7). Отличие А. (и соответственно лантаноидов) от др. элементов состоит в том, что при переходе от первого А. — Th (Z = 90) ко второму — Pa (Z = 91) и т. д. вплоть до последнего А. — Lr (Z = 103), каждый новый электрон, появляющийся в атомах параллельно с увеличением атомного номера (Z), попадает не на внешние оболочки (6-ю и 7-ю от ядра), как это бывает обычно, а заполняет более близкую к ядру 5-ю оболочку. У лантаноидов (число оболочек 6) также заполняется электронами более близкая к ядру 4-я оболочка (а не наружные — 5-я и 6-я). Таким образом, у элементов обоих семейств происходит заполнение 3-й снаружи электронной оболочки, а строение 2 наружных оболочек оказывается сходным. Число электронов на этих наружных оболочках у А. и лантаноидов, как правило, не отличается более чем на 1, причём почти во всех случаях представители каждого из семейств, равноудалённые соответственно от лантана и актиния, содержат на 2 наружных оболочках строго одинаковое число электронов. (Здесь изложен лишь принцип заполнения электронных оболочек у атомов обоих семейств; во многих случаях, особенно у А., порядок заполнения сложнее. См. Атом и Периодическая система элементов Д. И. Менделеева). 

  То обстоятельство, что при переходе от Th к Lr число электронов на 2 внешних оболочках, как правило, не изменяется, а положительный заряд ядра постепенно возрастает, вызывает более сильное притяжение внешних электронов к ядру и приводит к т. н. актиноидному сжатию: у нейтральных атомов и ионов А. одинаковой валентности при увеличении атомного номера радиусы не увеличиваются, как это обычно бывает, а даже несколько уменьшаются (например, радиус U3+ равен 1,03, Np3+ — 1,01, Pu3+ — 1,00, Am3+ — 0,99 и т. д.).

  Химические свойства элемента зависят в основном от числа электронов на наружных слоях и размера атомных и ионных радиусов, поэтому не удивительно, что во-первых, свойства А. близки между собой, и, во-вторых, химическое поведение А. и лантаноидов обладает большим сходством. Это сходство особенно заметно тогда, когда элементы находятся в одинаковом валентном состоянии. Так, 3-валентные А. образуют те же нерастворимые соединения (гидроокиси, фториды, карбонаты, оксалаты и др.), что и 3-валентные лантаноиды; трифториды, трихлориды и другие аналогичные соединения 3-валентных А. образуют изоструктурные ряды [другими словами, соединения, входящие в такие ряды, например в ряд MeCl3, где Me — атом А., обладают сходными кристаллическими решётками, параметры которых постепенно уменьшаются по мере роста атомного номера (Z) атома А.]. Такие же изоструктурные ряды образуют двуокиси, тетрафториды, гексафториды и другие соединения А. По склонности к гидролизу соединения 5-валентных А., например пентахлориды, очень близки между собой. В растворах 6-валентные А. существуют в виде МеО22+-ионов и т. д. Приведённые примеры далеко не исчерпывают всех случаев сходства А., пои на них можно убедиться в его наличии.

  Однако, кроме общих черт, между А. и лантаноидами имеется и существенная разница. Так, А. часто образуют соединения в состояниях окисления, значительно более высоких, чем +3, что не характерно для лантаноидов. В своих соединениях А. проявляют следующие валентности (наиболее типичная выделена жирным шрифтом): Th (3, 4), Pa (3, 4,5), U (3, 4, 5, 6), Np (3, 4, 5, 6, 7), Pu (3,4,5, 6, 7), Am (3, 4, 5, 6), Cm (3, 4), Bk (3,4), Cf (2, 3), Es (3), Fm (3), Md (2, 3), № 102 (2, 3). Таким образом, валентность 3 характерна для А. только после Am. Первые члены семейства А. (Th, Pa и U) в своих соединениях чаще бывают соответственно 4-, 5- и 6-валентными. А. в большей степени, чем лантаноиды, склонны к комплексообразованию. Указанные особенности А. объясняются тем, что «вновь пришедшие» на 5-ю от ядра оболочку электроны (т. н. 5f-электроны или электроны 5f-подуровня) по энергии связи с ядром очень близки к электронам 6-й оболочки (т. н. 6d-электронам или электронам 6d-подуровня); эти 6d-электроны и могут проявлять себя как дополнительные валентные (см. табл.). У лантаноидов же «вновь пришедшие» 4f-электроны всегда связаны с ядром значительно прочнее, чем 5d-электроны. Близость энергии связи с ядром 5f- и 6d-электронов у Th, Pa и U приводит к тому, что f-электроны 5-й оболочки также могут проявлять себя как валентные. Валентность 3 оказывается для этих элементов не характерной, и по многим своим признакам они похожи на элементы не III, а, соответственно, IV, V и VI групп периодической системы (и долгое время в эти группы и помещались). В 1930-х и в начале 1940-х гг. считалось, что и следующие за U элементы Np и Pu также должны относиться соответственно к VII и VIII группам периодической системы, или, вследствие обнаруженных у Np и Pu черт сходства с U, их следует разместить вместе с U в VI группе. Однако анализ закономерностей изменения химических свойств элементов 7-го периода, особенно после открытия следующих за Pu А., а также найденное экспериментально сходство кристаллографических, спектроскопических и магнитных характеристик соединений элементов, следующих за актинием, с соответствующими характеристиками лантаноидов, навели Сиборга на мысль, что трансурановые элементы должны рассматриваться как аналоги актиния, в результате чего и была выдвинута гипотеза о существовании семейства А. Актиноидная гипотеза в значительной мере способствовала успехам открытия Am, Cm и последующих А., т. к. из неё следовало, что наиболее характерная валентность этих элементов должна быть равна 3, а не 4 и 6, как первоначально предполагали, и, следовательно, в этом валентном состоянии их и надо искать.

Электронные конфигурации атомов актиноидов

 

Элемент

Число электронов на некоторых подуровнях

5-й оболочки

6-й оболочки

7-й оболочки

s

p

d

f

s

p

d

s

Th

2

6

10

0

2

6

2

2

Pa

2

6

10

2

2

6

1

2

U

2

6

10

3

2

6

1

2

Np

2

6

10

4

2

6

1

2

Pu

2

6

10

6

2

6

0

2

Am

2

6

10

7

2

6

0

2

Cm

2

6

10

7

2

6

1

2

Bk

2

6

10

8

2

6

1

2

Cf

2

6

10

9

2

6

1

2

Es

2

6

10

11

2

6

0

2

Fm

2

6

10

12

2

6

0

2

Md

2

6

10

13

2

6

0

2

102

2

6

10

14

2

6

0

2

Lr

2

6

10

14

2

6

1

2

  Свойства элементов, отнесённых Сиборгом к числу А., по рассмотренным выше причинам, значительно сильнее различаются между собой, чем свойства лантаноидов, и поэтому вопрос о том, существует ли в действительности в 7-м периоде семейство А. (аналогичное семейству лантаноидов 6-го периода), или строение 7-го периода в этой его части более сложное, долгое время не был решен до конца. Решающее значение для окончательного вывода о строении 7-го периода имело изучение химических свойств 104-го элемента — курчатовия (открытого Г. Н. Флёровым с сотрудниками в 1964), проведённое в 1966 под руководством чешского химика И. Звары в Дубне (СССР). Оказалось, что по своим свойствам курчатовий резко отличается от предшествующих элементов и представляет собой аналог гафния, принадлежащего уже к IV группе периодической системы. Теоретические же расчёты показывают, что число элементов, у которых заполняется f-подуровень 3-й снаружи электронной оболочки, должно быть равно 14, и поэтому следует принять, что семейство 14 А. начинается с Th и завершается у Lr. В настоящее время все А., как и лантаноиды, принято размещать в отдельном ряду внизу периодической системы.

  Из-за близости химических свойств А., особенно трансурановых, отделить их друг от друга крайне сложно. Для разделения А. очень полезным оказался метод ионообменной хроматографии, которым широко пользуются и для разделения лантаноидов. Поскольку этот метод сыграл важную роль в открытии и изучении А. и, кроме того, даёт ясное представление о работе с этими элементами, с ним стоит познакомиться подробнее. Стеклянную трубку, расположенную вертикально, заполняют специальным органическим полимером или смолой, а затем на этот полимер подают раствор, содержащий, например, 3-валентные ионы А. Ионы реагируют с полимером и оказываются связанными с ним химически. Для извлечения А. из трубки колонки через неё пропускают раствор, который содержит вещества, способные образовывать с ионами А. более прочные связи, чем органический полимер. Порядок выхода А. из колонки зависит, в основном, от ионного радиуса элементов, причём можно подобрать такие условия, что быстрее всего колонку покинут ионы с наименьшими радиусами. Т. к. радиусы ионов от Th к Lr постепенно уменьшаются, то выход ионов А. будет происходить в последовательности, обратной их атомным номерам Z. Порядок в выходе А. выполняется столь строго, что даёт возможность по наличию радиоактивных атомов в той или иной порции раствора, прошедшего через колонку, сделать вывод, какие именно элементы присутствуют в смеси, и точно определить их порядковые номера. Метод обладает высокой избирательностью, требует небольших затрат времени и пригоден даже тогда, когда в наличии имеется лишь несколько атомов элемента. Он был использован, в частности, при открытии Bk, Cf, Es, Fm и Md.

  Из всех А. к настоящему времени практическое. применение находят главным образом Th, U и Р . Изотопы 233U, 235U и 239Pu служат как ядерное горючее в атомных реакторах и играют роль взрывчатого вещества в атомных бомбах. Некоторые изотопы А. (238Pu, 242Cm и др.), испускающие a-частицы высокой энергии, могут служить для создания источников тока со сроком службы до 10 лет и более, необходимых, например, для питания навигационной радиоаппаратуры спутников. В таких источниках тока тепловая энергия, выделяющаяся при радиоактивном распаде, при помощи специальных устройств преобразуется в электрический ток. Изучение свойств А. имеет большое теоретическое значение, т. к. позволяет расширить знания о свойствах атомных ядер, химическом поведении элементов и т. д.

    Лит.: Хайд И., Сиборг Г. Т., Трансурановые элементы, пер. с англ., М., 1959; Сиборг Г., Кац Дж., Химия актинидных элементов, пер. с англ., М., 1960; Гольданский В. И., Новые элементы в Периодической системе Д. И. Менделеева, 3 изд., М., 1964; Лапицкий А. В., Цисурановые и трансурановые элементы, в сборнике: Рассказывают ученые-химики, М., 1964; Сиборг Г., Искусственные трансурановые элементы, пер. с англ., М., 1965; Хайд Э., Перлман И., Сиборг Г., Ядерные свойства тяжелых элементов, в. 1, Трансурановые элементы, пер. с англ., М., 1967.


АКТИНОИДЫ — по С. А. Щукарёву, элементы III группы нериодич. системы Д. II. Менделеева, следующие за актинием (см.), т. е. имеющие поряд­ковый номер больше 89. В наст, время известны А. с порядковыми номерами до 96 включительно, а именно: торий Th (90), протактиний Ра (91), уран U (92), нептуний Np (93), плутоний Ри (94), америций Am (95), кюрий (ли (96). С увеличением отношения ZV.4 (где Z — заряд ядра и А — его масса) устойчивость «Дер А. уменьшается, и при величине этого отношения ок. 40, что отвечает эле­менту с порядковым номером, близким к 100, ядро должно быть совершенно неустойчивым, т. е. суще­ствование элементов с порядковым номером свыше 100 теоретически мало вероятно. Распределение внешних электронов в атомах А., начиная с тория, характеризуется том, что заполняется подгруппа 5/ О-слоя, в к-рой число электронов последователь­но возрастает от 1 (у тория) до 7 (v кюрия), в то время как число электронов в подгруппах 6rf Р-слоя и 7s Q-слоя остаётся неизменным (со­ответственно 1 и 2). Подобный же порядок достройки электронной оболочки наблюдается и у лантаноидов; это дало основание для выделения элементов с 90 по 96 в семейство А. Однако по последним дан­ным атом тория имеет 2 электрона в подгруппах 5/, что говорит против включения ого в семейство А. Полной аналогии между А. и лантаноидами нет; напр. для U, Np и Ри наиболее характерна валент­ность шесть, в то время как лантаноиды по преиму­ществу трёхвалентны.

Лит.: С е м е н ч е н к о  В. К. и Коробов В В. Современное состояние периодического закона и новые элементы, «Успехи химии»,   1946, т.  15,   вып.  6;  С и-б о р г Г., Химические и радиоактивные свойства тяжёлых элементов, там же, вып. 4.


Актиноиды (актиниды) — семейство, состоящее из 14 радиоактивных химических элементов III группы 7-го периода периодической системы с атомными номерами 90—103.

Данная группа состоит из тория, протактиния, урана, нептуния, плутония, америция, кюрия, берклия, калифорния, эйнштейния,фермия, менделевия, нобелия и лоуренсия. Актиний часто для удобства сравнения рассматривается вместе с этими элементами, однако к А. он не относится. Термин «А.» был предложен Виктором Гольдшмидтом в 1937 году.

Подобно лантаноидам, А. образуют семейство схожих по свойствам элементов. Из А. выделяют две пересекающиеся группы: «трансурановые элементы» — все следующие в таблице Менделеева за ураном элементы и «трансплутониевые элементы» — все следующие за плутонием. Обе группы не ограничиваются указанными рамками и при указании приставки «транс-» могут включать в себя следующие за лоуренсием элементы — резерфордий и т. д. Это обусловлено тем, что такие элементы синтезируются в чрезвычайно малых количествах. По сравнению с лантаноидами, которые (кромепрометия) обнаружены в природе в заметных количествах, актиноиды труднее синтезировать. Но есть и исключения, например, легче всех синтезировать или найти в природе уран и торий, затем следуют плутоний, америций, актиний, протактиний и нептуний.

В настоящее время для получения изотопов ТПЭ используются два основных способа: облучение более лёгких элементов нейтронами или ускоренными заряженными частицами. Первый способ является практически наиболее важным, так как только вядерных реакторах при облучении исходного материала большим потоком нейтронов возможно получить весовые количества трансплутониевых элементов. Преимущество второго способа в том, что он позволяет получать следующие за плутонием элементы, и нейтронодефицитные изотопы, которые не образуются при нейтронном облучении.

В 1962—1966 годах в США была произведена попытка синтеза трансплутониевых изотопов посредством 6 подземных ядерных взрывов — «Анакостиа», «Кеннебек», «Энчови», «Пар», «Барбел» и «Цикламен». Для изучения продуктов взрыва использовались небольшие образцы пород, добытые из зоны взрыва сразу же после его проведения. При этом не удалось обнаружить изотопы тяжёлых элементов с массовым числом больше 257, хотя для них были предсказаны в то время относительно большие величины T½ для α-распада. Возможно, это произошло потому, что атомы с большой скоростью спонтанно делились, или из-за другого характера распада промежуточных изотопов (испускание нейтронов, деление). 

Первыми открытыми А. были уран и торий. Уран открыл М. Клапрот в 1789 году в урановой смоляной руде (название элемента происходит от названия планеты Уран). М. Клапрот, восстанавливая углём жёлтый оксид урана, добыл чёрное вещество, которое ошибочно принял за металл. Только через 60 лет французский исследователь Эжен Мелькиор Пелиго изучил его и понял, что это вещество — диоксид урана. Тогда же была неправильно вычислена атомная масса — 120. Только Д. И. Менделеев в 1872 году на основании открытого им закона уточнил атомную массу урана — 240. Экспериментально эту величину подтвердил в 1882 году К. Циммерман.

Торий открыл Ф. Вёлер в минерале, который был найден в Норвегии (1827 год). Детально изучил этот элемент Й. Берцелиус; он же назвал его в честь скандинавского бога грома и молнии — Тора (1828 год).

Актиний был открыт в 1899 году помощником М. Склодовской-Кюри А. Дебьерном в отходах от переработки урановой смолки, из которой предварительно были удалены радий и полоний; он был выявлен во фракции, в которой при переработке руды концентрируются лантаноиды. Название элемента «актиний» происходит от лат. actis — луч, сияние. Данный металл был открыт не по его собственному излучению, а по излучению дочерних продуктов распада.

Из-за высокого сходства актиния и лантана и незначительного распространения актиния долгое время не удавалось выделить его в чистом виде. Чистый актиний был добыт лишь в 1950 году. Для элемента на данный момент известны 31 изотоп с массовыми числами 206—236 и 8 возбужденных изомерных состояний некоторых его нуклидов. Наиболее стабильным являетсяизотоп актиния 227Ac, который имеет период полураспада T½ = 21,77 года.

В 1917 году долгоживущий изотоп протактиния открыли О. Ган и Л. Мейтнер. Название «протактиний» означает, что атом этого элемента способен образовывать актиний. На данный момент известны 29 изотопов протактиния с массовыми числами 212—240 и 3 возбужденных изомерных состояния некоторых его нуклидов. Наиболее стабилен нуклид 231Pa, период полураспада которого равен 3,28×104 лет.

Большинство трансурановых элементов уже в достаточной мере изучены, но говорить о производственных количествах данных элементов, исключая плутоний и америций, и их соединений не приходится.

Первым предположил существование трансурановых элементов Энрико Ферми, что явилось результатом ряда его экспериментов в 1934 году.

Синтез изотопа нептуния 239Np, который провели в 1940 г. Э. Мак-Миллан и Ф. Абельсон, положил начало открытию трансурановых элементов. В последующие года был произведен ядерный синтез других изотопов нептуния.

А. на протяжении последних десятилетий досконально изучались Г. Сиборгом и его школой. При участии Сиборга был произведён синтез большинства трансурановых элементов.

Трансурановые элементы в природе практически не встречаются. Для их получения используют ядерные реакции, которые проходят в ядерных реакторах. Так, например, уран-238 в реакторе под действием нейтронов частично преобразуется в плутоний-239. 

При дальнейшем поглощении нейтронов 239Pu превращается в 241Pu, который вследствие β-распада переходит в 241Am.

продолжение

Loading

Календарь

«  Апрель 2024  »
ПнВтСрЧтПтСбВс
1234567
891011121314
15161718192021
22232425262728
2930

Архив записей

Друзья сайта

  • Заказать курсовую работу!
  • Выполнение любых чертежей
  • Новый фриланс 24